Биохимия мышечной деятельности. Мышечная деятельность – сокращение и расслабление протекают при обязательном использовании энергии, которая выделяется. Лекция: Биохимические основы спортивной тренировки Список использованной литературы

Несколько слов об этой статье:
Во-первых, как и говорил в паблике - данная статья переведена с другого языка (пускай и, в принципе, близкого русскому, но все равно перевод - это достаточно сложная работа). Забавно то, что после того, как все перевел - нашел в интернете небольшую часть этой, уже переведенной на русский язык, статьи. Жаль потраченного времени. Ну да ладно..

Во-вторых, это статья о биохимии! Отсюда надо сделать вывод, что она будет тяжелой для восприятия, и как тут ни старайся ее упростить - все равно объяснить все на пальцах невозможно, поэтому подавляющее большинство описанных механизмов объяснять простым языком не стал, чтобы не запутывать читающих еще больше. Если внимательно и вдумчиво читать, то во всем можно будет разобраться. Ну и в-третьих, в статье присутствует достаточное количество терминов (некоторые вкратце объясняются в скобках, некоторые - нет. т.к. двумя-тремя словами их не объяснить, а если их начинать расписывать, то статья может стать слишком большой и абсолютно непонятной). Поэтому, я бы советовал использовать интернет-поисковики для тех слов, значения которых вам неизвестно.

Возможен вопрос типа: "Зачем выкладывать такие сложные статьи, если в них трудно разобраться?" Такие статьи нужны для того, чтобы понимать какие процессы в организме протекают в тот или иной промежуток времени. Считаю, что только после знания подобного рода материала можно начинать создавать для себя методические системы по тренингу. Если же этого не знать, то многие из способов изменить тело будут наверняка из разряда "ткнуть пальцем в небо", т.е. они понятно на чем основанные. Это лишь мое мнение.

И еще просьба: если в статье есть что-то, на ваш взгляд, неверное, или какая-то неточность, то прошу об этом написать в комментариях (или мне в Л.С.).

Поехали..


Организм человека, а уж тем более спортсмена, никогда не работает в "линейном" (неизменном) режиме. Очень часто тренировочный процесс может заставить его перейти на предельно возможные для него "обороты". Для того, чтобы выдержать нагрузку, организм начинает оптимизировать свою работу под данный тип стресса. Если рассматривать именно силовой тренинг (бодибилдинг, пауэрлифтинг, тяжелая атлетика и пр.), то первым, кто подает сигнал в теле человека о необходимых временных перестройках (адаптация) являются наши мышцы.

Мышечная деятельность вызывает изменения не только в работающем волокне, но и приводит к биохимическим изменениям во всем организме. Усилению мышечного энергетического обмена предшествует значительное повышение активности нервной и гуморальной систем.

В предстартовом состоянии активизируется действие гипофиза, коры надпочечников, поджелудочной железы. Совместное действие адреналина и симпатической нервной системы приводит к: повышению ЧСС, увеличению объема циркулирующей крови, образованию в мышцах и проникновению в кровь метаболитов энергетического обмена (СО2, СН3-СН (ОН)-СООН, АМФ). Происходит перераспределение ионов калия, что приводит к расширению кровеносных сосудов мышц, сужению сосудов внутренних органов. Вышеуказанные факторы приводят к перераспределению общего кровотока организма, улучшая доставку кислорода к работающим мышцам.

Поскольку внутриклеточных запасов макроэргов хватает на непродолжительное время, то в предстартовом состоянии происходит мобилизация энергетических ресурсов организма. Под действием адреналина (гормон надпочечников) и глюкагона (гормон поджелудочной железы) усиливается распад гликогена печени до глюкозы, которая током крови переносится к работающим мышцам. Внутримышечный и печеночный гликоген - субстрат для ресинтеза АТФ в креатинфосфатных и гликолитических процессах.


С увеличением продолжительности работы (стадия аэробного ресинтеза АТФ), основную роль в энергообеспечении мышечного сокращения начинают играть продукты распада жиров (жирные кислоты и кетоновые тела). Липолиз (процесс расщепления жиров) активируется адреналином и соматотропином (он же "гормон роста"). В это же время усиливается печеночный «захват» и окисление липидов крови. В результате печень выбрасывает в кровяное русло значительные количества кетоновых тел, которые доокисляются до углекислого газа и воды в работающих мышцах. Процессы окисления липидов и углеводов протекают параллельно, а от количества последних зависит функциональная активность головного мозга и сердца. Поэтому, в период аэробного ресинтеза АТФ протекают процессы глюконеогенеза - синтез углеводов из веществ углеводородной природы. Регулирует этот процесс гормон надпочечников - кортизол. Основным субстратом глюконеогенеза являются аминокислоты. В незначительных количествах образования гликогена происходит и из жирных кислот (печень).

Переходя из состояния покоя к активной мышечной работе, потребность в кислороде значительно возрастает, поскольку последний является конечным акцептором электронов и протонов водорода системы дыхательной цепи митохондрий в клетках, обеспечивая процессы аэробного ресинтеза АТФ.

На качество кислородного обеспечения работающих мышц влияет «закисление» крови метаболитами процессов биологического окисления (молочная кислота, углекислый газ). Последние воздействуют на хеморецепторы стенок кровеносных сосудов, которые передают сигналы в ЦНС, усиливая активность дыхательного центра продолговатого мозга (участок перехода головного мозга в спинной).

Кислород из воздуха распространяется в кровь через стенки легочных альвеол (см. рисунок) и кровеносных капилляров вследствие разности его парциальных давлений:


1) Парциальное давление в альвеолярном воздухе - 100-105 мм. рт. ст
2) Парциальное давление в крови в состоянии покоя - 70-80 мм. рт. ст
3) Парциальное давление в крови при активной работе - 40-50 мм. рт. ст

Только небольшой процент кислорода, поступающего в кровь, растворяется в плазме (0.3 мл на 100 мл крови). Основная часть связывается в эритроцитах гемоглобином:

Hb + O2 -> HbO2​

Гемоглобин - белковая мультимолекула, состоящая из четырех вполне самостоятельных субъединиц. Каждая субъединица связана с гемом (гем - железосодержащая простетическая группа).

Присоединение кислорода к железосодержащей группе гемоглобина объясняют понятием родства. Родство к кислороду в различных белках различно и зависит от структуры белковой молекулы.

Молекула гемоглобина может присоединять 4 молекулы кислорода. На способность гемоглобина связывать кислород влияют следующие факторы: температура крови (чем она ниже, тем лучше связывается кислород, а ее повышение способствует распаду окси-гемоглобина); щелочная реакция крови.

После присоединения первых молекул кислорода, кислородная родство гемоглобина повышается в результате конформационных изменений полипептидных цепей глобина.
Обогащенная в легких кислородом кровь поступает в большой круг кровообращения (сердце в состоянии покоя перекачивает ежеминутно 5-6 литров крови, транспортируя при этом 250 - 300 мл О2). Во время же интенсивной работы за одну минуту скорость перекачки возрастает до 30-40 литров, а количество кислорода, что переносится кровью, составляет 5-6 литров.

Попадая в работающие мышцы (благодаря наличию высоких концентраций СО2 и повышенной температуре) происходит ускоренный распад оксигемоглобина:

H-Hb-O2 -> H-Hb + O2​

Поскольку давление углекислого газа в ткани больше, чем в крови, то освобожденный от кислорода гемоглобин обратимо связывает СО2, образуя карбаминогемоглобин:

H-Hb + СО2 -> H-Hb-CO2​


который распадается в легких до углекислого газа и протонов водорода:

H-Hb-CO2 -> H + + Hb-+ CO2​


Протоны водорода нейтрализуются отрицательно заряженными молекулами гемоглобина, а углекислый газ выводится в окружающую среду:

H + + Hb -> H-Hb​


Несмотря на определенную активацию биохимических процессов и функциональных систем в предстартовом состоянии, при переходе из состояния покоя к интенсивной работе наблюдается определенный дисбаланс между потребностью в кислороде и его доставкой. Количество кислорода, которое необходимо для удовлетворения организма при выполнении мышечной работы, называется кислородным спросом организма. Однако, повышенная потребность кислорода какое-то время не может быть удовлетворена, потому необходимо некоторое время, чтобы усилить деятельность систем дыхания и кровообращения. Поэтому, начало любой интенсивной работы происходит в условиях недостаточного количества кислорода - кислородного дефицита.

Если работа осуществляется с максимальной мощностью за короткий промежуток времени, то потребность в кислороде так велика, что не может быть удовлетворена даже максимально возможным поглощением кислорода. Например, при беге на 100 м, организм снабжается кислородом на 5-10%, а 90-95% кислорода поступает после финиша. Избыток потребленного кислорода после выполненной работы называется кислородным долгом.

Первая часть кислорода, которая идет на ресинтез креатинфосфата (распавшегося при работе), получила название алактатного кислородного долга; вторая же часть кислорода, идущего на устранение молочной кислоты и ресинтез гликогена, называется лактатным кислородным долгом.

Рисунок. Кислородный приход, кислородный дефицит и кислородный долг при длительной работе разной мощности. А - при легкой, Б - при тяжелой, и В - при истощающей работе; I - период врабатывания; II - устойчивое (А, Б) и ложное устойчивое (В) состояние во время работы; III - восстановительный период после выполнения упражнения; 1 - алактатный, 2 - гликолитический компоненты кислородного долга (по Волкову Н. И., 1986).

Алактатный кислородный долг компенсируется относительно быстро (30 сек. - 1 мин.). Характеризует вклад креатинфосфата в энергетическое обеспечение мышечной деятельности.

Лактатный кислородный долг полностью компенсируется за 1.5-2 часа по окончании работы. Указывает долю гликолитических процессов в энергообеспечении. При длительной интенсивной работе в образовании лактатного кислородного долга присутствует значительная доля других процессов.

Выполнение интенсивной мышечной работы невозможно без интенсификации обменных процессов в нервной ткани и тканях сердечной мышцы. Лучшее энергообеспечение сердечной мышцы обусловливается рядом биохимических и анатомо-физиологических особенностей:
1. Сердечная мышца пронизана чрезвычайно большим количеством кровеносных капиляров по которым течет кровь с большой концентрацией кислорода.
2. Наиболее активными являются ферменты аэробного окисления.
3. В состоянии покоя в качестве энергетических субстратов используются жирные кислоты, кетоновые тела, глюкоза. При напряженной мышечной работе основным энергетическим субстратом является молочная кислота.

Интенсификация обменных процессов нервной ткани выражается в следующем:
1. Увеличивается потребление глюкозы и кислорода в крови.
2. Повышается скорость восстановления гликогена и фосфолипидов.
3. Усиливается распад белков и образование аммиака.
4. Снижается общее количество запасов макроэргических фосфатов.


Поскольку биохимические изменения происходят в живых тканях, то непосредственно их наблюдать и изучать довольно проблематично. Поэтому, зная основные закономерности протекания обменных процессов, основные выводы об их течении делают на основе результатов анализа крови, мочи, выдыхаемого воздуха. Так, например, вклад креатинфосфатной реакции в энергетическое обеспечение мышц оценивается концентрацией продуктов распада (креатина и креатинина) в крови. Наиболее точным показателем интенсивности и емкости аэробных механизмов энергообеспечения является количество потребленного кислорода. Уровень развития гликолитических процессов оценивают по содержанию молочной кислоты в крови как во время работы, так и в первые минуты отдыха. Изменение показателей кислотного равновесия позволяет сделать вывод о способности организма противостоять кислым метаболитам анаэробного обмена.

Изменение скорости метаболических процессов при мышечной деятельности зависит от:
- Общего количества мышц, которые участвуют в работе;
- Режима работы мышц (статический или динамический);
- Интенсивности и продолжительности работы;
- Количества повторов и пауз отдыха между упражнениями.

В зависимости от количества мышц, участвующих в работе, последняя делится на локальную (в исполнении участвуют менее 1/4 всех мышц), региональную и глобальную (участвуют более 3/4 мышц).
Локальная работа (шахматы, стрельба) - вызывает изменения в работающей мышце, не вызывая биохимических изменений в организме в целом.
Глобальная работа (ходьба, бег, плавание, лыжные гонки, хоккей и др..) - вызывает большие биохимические изменения во всех органах и тканях организма, наиболее сильно активизирует деятельность дыхательной и сердечно-сосудистой систем. В энергообеспечении работающих мышц чрезвычайно велик процент аэробных реакций.
Статический режим мышечного сокращения приводит к пережиму капиляров, а значит к худшему обеспечения кислородом и энергетическими субстратами работающие мышцы. В качестве энергетического обеспечения деятельности выступают анаэробные процессы. Отдыхом после выполнения статической работы должна быть динамическая низкоинтенсивная работы.
Динамический режим работы гораздо лучше обеспечивает кислородом работающие мышцы, потому попеременное сокращение мышц действует как своеобразный насос, проталкивая кровь сквозь капилляры.

Зависимость биохимических процессов от мощности выполняемой работы и ее длительности выражается в следующем:
- Чем выше мощность (высокая скорость распада АТФ), тем выше доля анаэробного ресинтеза АТФ;
- Мощность (интенсивность), при которой достигается наивысшая степень гликолитических процессов энергообеспечения, называется мощностью истощения.

Максимально возможная мощность определяется как максимальная анаэробная мощность. Мощность работы обратно пропорционально связана с продолжительностью работы: чем выше мощность, тем быстрее происходят биохимические изменения, приводящие к возникновению усталости.

Из всего сказанного можно сделать несколько простых выводов:
1) Во время тренировочного процесса идет интенсивный расход различных ресурсов (кислород, жирные кислоты, кетоны, белки, гормоны и многое другое). Именно поэтому организм спортсмена постоянно нуждается в обеспечении себя полезными веществами (питание, витамины, пищевые добавки). Без подобной поддержки велика вероятность причинить вред здоровью.
2) При переходе в "боевой" режим телу человека требуется некоторое время, чтобы адаптироваться к нагрузке. Именно поэтому не стоит с первой минуты тренировки предельно себя нагружать - организм просто к этому не готов.
3) По окончании тренировки тоже нужно помнить, что опять же требуется время, чтобы тело из возбужденного состояния перешло в спокойное. Хорошим вариантом для решения данного вопроса является заминка (снижение тренировочной интенсивности).
4) У организма человека есть свои пределы (ЧСС, давление, количество полезных веществ в крови, скорость синтеза веществ). Исходя из этого нужно подбирать оптимальный под себя тренинг по интенсивности и продолжительности, т.е. найти ту середину, при которой можно получить максимум положительного и мимимум отрицательного.
5) Должна использоваться как статика, так и динамика!
6) Не все так сложно, как сперва кажется..

На этом и закончим.

P.S. Касательно усталости - есть еще одна статья (о которой тоже вчера писал в паблике - "Биохимические изменения при усталости и в период отдыха". Она в два раза короче и в 3 раза проще этой, но не знаю стоит ли ее здесь выкладывать. Просто суть ее в том, что она подытоживает выложенную здесь статью о суперкомпенсации и о "токсинах усталости". Для коллекции (полноты всей картины) могу ее тоже представить. Пишите в комментариях - нужно или нет.

Мышечная система и ее функции

сокращений, общий обзор скелетной мускулатуры)

Существует два вида мускулатуры: гладкая (непроизвольная) и поперечно-полосатая (произвольная). Гладкие мышцы расположены в стенках кровеносных сосудов и некоторых внутренних органах. Они сужают или расширяют сосуды, продвигают пищу по желудочно-кишечному тракту, сокращают стенки мочевого пузыря. Поперечно-полосатые мышцы – это все скелетные мышцы, которые обеспечивают многообразные движения тела. К поперечно-полосатым мышцам относится также и сердечная мышца, автоматически обеспечивающая ритмическую работу сердца на протяжении всей жизни. Основа мышц – белки, составляющие 80–85% мышечной ткани (исключая воду). Главное свойство мышечной ткани – сократимость, она обеспечивается благодаря сократительным мышечным белкам – актину и миозину.

Мышечная ткань устроена очень сложно. Мышца имеет волокнистую структуру, каждое волокно – это мышца в миниатюре, совокупность этих волокон и образуют мышцу в целом. Мышечное волокно, в свою очередь, состоит из миофибрилл. Каждая миофибрилла разделена на чередующиеся светлые и темные участки. Темные участки – протофибриллы состоят из длинных цепочек молекул миозина, светлые образованы более тонкими белковыми нитями актина. Когда мышца находится в несокращенном (расслабленном) состоянии, нити актина и миозина лишь частично продвинуты относительно друг друга, причем каждой нити миозина противостоят, окружая ее, несколько нитей актина. Более глубокое продвижение относительно друг друга обусловливает укорочение (сокращение) миофибрилл отдельных мышечных волокон и всей мышцы в целом (рис. 2.3).

К мышце подходят и от нее отходят (принцип рефлекторной дуги) многочисленные нервные волокна (рис. 2.4). Двигательные (эфферентные) нервные волокна передают импульсы от головного и спинного мозга, приводящие мышцы в рабочее состояние; чувствительные волокна передают импульсы в обратном направлении, информируя центральную нервную, систему о деятельности мышц. Через симпатические нервные волокна осуществляется регуляция обменных процессов в мышцах, посредством чего их деятельность приспосабливается к изменившимся условиям работы, к различным мышечным нагрузкам. Каждую мышцу пронизывает разветвленная сеть капилляров, по которым поступают необходимые дли жизнедеятельности мышц вещества и выводятся продукты обмена.

Скелетная мускулатура. Скелетные мышцы входят в структуру опорно-двигательного аппарата, крепятся к костям скелета и при сокращении приводят в движение отдельные звенья скелета, рычаги. Они участвуют в удержании положения тела и его частей в пространстве, обеспечивают движения при ходьбе, беге, жевании, глотании, дыхании и т.д., вырабатывая при этом тепло. Скелетные мышцы обладают способностью возбуждаться под влиянием нервных импульсов. Возбуждение проводится до сократительных структур (миофибрилл), которые, сокращаясь, выполняют определенный двигательный акт – движение или напряжение.


Рис. 2.3. Схематическое изображение мышцы.

Мышца (Л) состоит из мышечных волокон (Б), каждое из них - из миофибрилл (В). Миофибрилла (Г) составлена из толстых и тонких миофиламентов (Д). На рисунке показан один саркомер, ограниченный с двух сторон линиями: 1 - изотропный диск, 2 - анизотропный диск, 3 - участок с меньшей анизотропностью. Поперечный сред мнофибриллы (4), дающий представление о гексагональиом распределении толстых и тонких мнофиламснтов


Рис. 2.4. Схема простейшей рефлекторной дуги:

1 - аффрерентный (чувствительный) нейрон, 2 - спинномозговой узел, 3 - вставочный нейрон, 4 .- серое вещество спинного мозга, 5 - эфферентный (двигательный) нейрон, 6 - двигательное нервное окончание в мышцах; 7 - чувствительное нервное окончание в коже

Напомним, что вся скелетная мускулатура состоит из поперечно-полосатых мышц. У человека их насчитывается около 600 и большинство из них - парные. Их масса составляет 35-40% общей массы тела взрослого человека. Скелетные мышцы снаружи покрыты плотной со-единительнотканной оболочкой. В каждой мышце различают активную часть (тело мышцы) и пассивную (сухожилие). Мышцы делятся на длинные, короткие и широкие.

Мышцы, действие которых направлено противоположно, называются антагонистами, однонаправленно - синергистами. Одни и те же мышцы в различных ситуациях могут выступать в том и другом качестве. У человека чаще встречаются веретенообразные и лентовидные. Веретенообразные мышцы расположены и функционируют в районе длинных костных образований конечностей, могут иметь два брюшка (двубрюшные мышцы) и несколько головок (двуглавые, трехглавые, четырехглавые мышцы). Лентовидные мышцы имеют различную ширину и обычно участвуют в корсетном образовании стенок туловища. Мышцы с перистым строением, обладая большим физиологическим поперечником за счет большого количества коротких мышечных структур, значительно сильнее тех мышц, ход волокон в которых имеет прямолинейное (продольное) расположение. Первые называют сильными мышцами, осуществляющими малоамплитудные движения, вторые - ловкими, участвующими в движениях с большой амплитудой. По функциональному назначению и направлению движений в суставах различают мышцы сгибатели и разгибатели, приводящие и отводящие, сфинктеры (сжимающие) и расширители.

Сила мышцы определяется весом груза, который она может поднять на определенную высоту (или способна удерживать при максимальном возбуждении), не изменяя своей длины. Сила мышцы зависит от суммы сил мышечных волокон, их сократительной способности; от количества мышечных волокон в мышце и количества функциональных единиц, одновременно возбуждающихся при развитии напряжения; от исходной длины мышцы (предварительно растянутая мышца развивает большую силу); от условий взаимодействия с костями скелета.

Сократительная способность мышцы характеризуется ее абсолютной силой, т.е. силой, приходящейся на 1 см 2 поперечного сечения мышечных волокон. Для расчета этого показателя силу мышцы делят на площадь ее физиологического поперечника (т.е. на сумму площадей всех мышечных волокон, составляющих мышцу). Например: в среднем у человека сила (на 1 см 2 попереченого сечения мышцы) икроножной мышцы. - 6,24; разгибателей шеи - 9,0; трехглавой мышцы плеча - 16,8кг.

Центральная нервная система регулирует силу сокращения мышцы путем изменения количества одновременно участвующих в сокращении функциональных единиц, а также частотой посылаемых к ним импульсов. Учащение импульсов ведет к возрастанию величины напряжения.

Работа мышц. В процессе мышечного сокращения потенциальная химическая энергия переходит в потенциальную механическую энергию напряжения и кинетическую энергию движения. Различают внутреннюю и внешнюю работу. Внутренняя работа связана с трением в мышечном волокне при его сокращении. Внешняя работа проявляется при перемещении собственного тела, груза, отдельных частей организма (динамическая работа) в пространстве. Она характеризуется коэффициентом полезного действия (КПД) мышечной системы, т.е. отношением производимой работы к общим энергетическим затратам (для мышц человека кпд составляет 15-20%, у физически развитых тренированных людей этот показатель несколько выше).

При статических усилиях (без перемещения) можно говорить не о работе как таковой с точки зрения физики, а о работе, которую следует оценивать энергетическими физиологическими затратами организма.

Мышца как орган. В целом мышца как орган представляет собой сложное структурное образование, которое выполняет определенные функции, состоит на 72-80% из воды и на 16-20% из плотного вещества. Мышечные волокна состоят из миофибрилл с клеточными ядрами, рибосомами, митохондриями, саркоплазматическим ретикулюмом, чувствительными нервными образованиями - проприорецепторами и другими функциональными элементами, обеспечивающими синтез белков, окислительное фосфорилирование и ресинтез аденозинтрифосфорной кислоты, транспортировку веществ внутри мышечной клетки и т.д. в процессе функционирования мышечных волокон. Важным структурно-функциональным образованием мышцы является двигательная, или нейромоторная, единица, состоящая из одного мотонейрона и иннервируемых им мышечных волокон. Различают малые, средние и большие двигательные единицы в зависимости от количества мышечных волокон, задействованных в акте сокращения.

Система соединительнотканных прослоек и оболочек связывает мышечные волокна в единую рабочую систему, обеспечивающую с помощью сухожилий передачу возникающей при мышечном сокращении тяги на кости скелета.

Вся мышца пронизана разветвленной сетью кровеносных и веточками лимфатических сосунов. Красные мышечные волокна обладают более густой сетью кровеносных сосудов, чем белые. Они имеют большой запас гликогена и липидов, характеризуются значительной тонической активностью, способностью к длительному напряжению и выполнению продолжительной динамической работы. Каждое красное волокно имеет больше, чем белое, митохондрий - генераторов и поставщиков энергии, окруженных 3-5 капиллярами, и это создает условия для более интенсивного кровоснабжения красных волокон и высокого уровня обменных процессов.

Белые мышечные волокна имеют миофибриллы, которые толще и сильнее миофибрилл красных волокон, они быстро сокращаются, но не способны к длительному напряжению. Митохондрий белого вещества имеют только один капилляр. В большинстве мышц содержатся красные и белые волокна в разных пропорциях. Различают также мышечные волокна тонические (способные к локальному возбуждению без его распространения); фазные, .способные реагировать на распространяющуюся волну возбуждения как сокращением, так и расслаблением; переходные, сочетающие оба свойства.

Мышечный насос - физиологическое понятие, связанное с мышечной функцией и ее влиянием на собственное кровоснабжение. Принципиальное его действие проявляется следующим образом: во время сокращения скелетных мышц приток артериальной крови к ним замедляется и ускоряется отток ее по венам; в период расслабления венозный отток уменьшается, а артериальный приток достигает своего максимума. Обмен веществ между кровью и тканевой жидкостью происходит через стенку капилляра.

Рис. 2.5. Схематическое изображение процессов, происходящих в

синапсе при возбуждении:

1 - синаптические пузырьки, 2 - пресинаптическая мембрана, 3 - медиатор, 4 - пост-синаптическая мембрана, 5 - синаптическая щель

Механизмы мышечного Функции мышц регулируются различными сокращения отделами центральной нервной системы (ЦНС), которые во многом определяют характер их разносторонней активности

(фазы движения, тонического напряжения и др.). Рецепторы Двигательного аппарата дают начало афферентным волокнам двигательного анализатора, которые составляют 30-50% волокон смешанных (афферентно-эфферентных) нервов, направляющихся в спинной мозг. Сокращение мышц Вызывает импульсы, которые являются источником мышечного чувства - кинестезии.

Передача возбуждения с нервного волокна на мышечное осуществляется через нервно-мышечный синапс (рис. 2.5), который состоит из двух разделенных щелью мембран - пресинаптической (нервного происхождения) и постсинаптической (мышечного происхождения). При воздействии нервного импульса выделяются кванты ацетилхолина, который приводит к возникновению электрического потенциала, способного возбудить мышечное волокно. Скорость проведения нервного импульса через синапс в тысячи раз меньше, чем в нервном волокне. Он проводит возбуждение только в направлении к мышце. В норме через нервно-мышечный синапс млекопитающих может пройти до 150 импульсов в одну секунду. При утомлении (или патологии) подвижность нервно-мышечных окончаний снижается, а характер импульсов может изменяться.

Химизм и энергетика мышечного сокращения. Сокращение и напряжение мышцы осуществляется за счет энергии, освобождающейся при химических превращениях, которые происходят при поступлении в

мышцу нервного импульса или нанесении на нее непосредственного раздражения. Химические превращения в мышце протекают как при наличии кислорода (в аэробных условиях), так и при его отсутствии (в анаэробных условиях).

Расщепление и ресинтез аденозинтрифосфорной кислоты (АТФ). Первичным источником энергии для сокращения мышцы служит расщепление АТФ (она находится в клеточной мембране, ретикулюме и миозиновых нитях) на аденозиндифосфорную кислоту (АДФ) и фосфорные кислоты. При этом из каждой грамм-молекулы АТФ освобождается 10 000 кал:

АТФ = АДФ + НзР04 + 10 000 кал.

АДФ в ходе дальнейших превращений дефосфолирируется до аде-ниловой кислоты. Распад АТФ стимулирует белковый фермент актомиозин (аденозинтрифосфотаза). В покое он не активен, активизируется при возбуждении мышечного волокна. В свою очередь АТФ воздействует на нити миозина, увеличивая их растяжимость. Активность актомиозина увеличивается под воздействием ионов Са, которые в состоянии покоя располагаются в саркоплазматическом ретикулюме.

Запасы АТФ в мышце незначительны и, чтобы поддерживать их деятельность, необходим непрерывный ресинтез АТФ. Он происходит за счет энергии, получаемой при распаде креатинфосфата (КрФ) на креатин (Кр) и фосфорную кислоту (анаэробная фаза). С помощью ферментов фосфатная группа от КрФ быстро переносится на АДФ (в течение тысячных долей секунды). При этом на каждый моль КрФ освобождается 46 кДж:

Таким образом, конечный процесс, обеспечивающий все энергетические расходы мышцы, - процесс окисления. Между тем длительная деятельность мышцы возможна лишь При достаточном поступлении к ней кислорода, так как содержание веществ, способных отдавать энергию, в анаэробных условиях постепенно падает. Кроме того, при этом накапливается молочная кислота, сдвиг реакции в кислую сторону нарушает ферментативные реакции и может привести к угнетению и дезорганизации обмена веществ и снижению работоспособности мышц. Подобные условия возникают в организме человека при работе максимальной, субмаксимальной и большой интенсивности (мощности), например при беге на короткие и средние дистанции. Из-за развившейся гипоксии (нехватки кислорода) не полностью восстанавливается АТФ, возникает так называемый кислородный долг и накапливается молочная кислота.

Аэробный ресинтез АТФ (синонимы: окислительное фосфолири-рование, тканевое дыхание) - в 20 раз эффективнее анаэробного энергообразования. Накопленная во время анаэробной деятельности и в процессе длительной работы часть молочной кислоты окисляется до углекислоты и воды (1/4-1/6 ее часть), образующаяся энергия используется на восстановление оставшихся частей молочной кислоты в глюкозу и гликоген, при этом обеспечивается ресинтез АТФ и КрФ. Энергия окислительных процессов используется также и для ресинтеза углеводов, необходимых мышце для ее непосредственной деятельности.

В целом углеводы дают наибольшее количество энергии для мышечной работы. Например, при аэробном окислении глюкозы образуются 38 молекул АТФ (для сравнения: при анаэробном распаде углевода образуется лишь 2 молекулы АТФ).

Время развертывания аэробного пути образования АТФ составляет 3-4 мин (у тренированных - до 1 мин), максимальная мощность при этом 350-450 кал/мин/кг, время поддержания максимальной мощности - десятки минут. Если в покое скорость аэробного ресинтеза АТФ невысокая, то при физических нагрузках его мощность становится максимальной и при этом аэробный путь может работать часами. Он отличается также высокой экономичностью: в ходе этого процесса идет глубокий распад исходных веществ до конечных продуктов СОг и НаО. Кроме того, аэробный путь ресинтеза АТФ отличается универсальностью в использовании субстратов: окисляются все органические вещества организма (аминокислоты, белки, углеводы, жирные кислоты, кетоновые тела и др.).

Однако аэробный способ ресинтеза АТФ имеет и недостатки: 1) он требует потребления кислорода, доставка которого в мышечную ткань обеспечивается дыхательной и сердечно-сосудистой системами, что, естественно, связано с их напряжением; 2) любые факторы, влияющие на состояние и свойство мембран митохондрий, нарушают образование АТФ; 3) развертывание аэробного образования АТФ продолжительно во времени и невелико по мощности.

Мышечная деятельность, осуществляемая в большинстве видов спорта, не может полностью быть обеспечена аэробным процессом ре-синтеза АТФ, и организм вынужден дополнительно включать анаэробные способы образования АТФ, имеющие более короткое время развертывания и большую максимальную мощность процесса (т.е. наибольшее количество АТФ," образуемое в единицу времени) - 1 моль АТФ соответствует 7,3 кал, или 40 Дж (1 кал == 4,19 Дж).

Возвращаясь к анаэробным процессам энергообразования, следует уточнить, что они протекают по меньшей мере в виде двух типов реакций: 1. Креатинфосфокиназная - когда осуществляется расщепление КрФ, фосфорные группировки с которого переносятся на АДФ, ресинтезируя при этом АТФ. Но запасы креатинфосфата в мышцах невелики и это обусловливает быстрое (в течение 2-4 с) угасание этого типа реакции. 2. Гликолитическая (гликолиз) - развивается медленнее, в течение 2-3 мин интенсивной работы. Гликолиз начинается с фосфолирирования запасов гликогена мышц и поступающей с кровью глюкозы. Энергии этого процесса хватает на несколько минут напряженной работы. На этом этапе завершается первая стадия фосфолирирования гликогена и происходит подготовка к окислительному процессу. Затем наступает вторая стадия гликолитической реакции - дегидрогенирование и третья - восстановление АДФ в АТФ. Гликолитическая реакция заканчивается образованием двух молекул молочной кислоты, после чего разворачиваются дыхательные процессы (к 3-5 мин работы), когда начинает окисляться молочная кислота (лак-тат), образованная в процессе анаэробных реакций.

Биохимическими показателями оценки креатинфосфатного анаэробного пути ресинтеза АТФ является креатининовый коэффициент и алактатный (без молочной кислоты) кислородный долг. Креатининовый коэффициент - это выделение креатинина с мочой за сутки в расчете на 1 кг массы тела. У мужчин выделение креатинина колеблется в пределах 18-32 мг/сут х кг, а у женщин - 10-25 мг/сут х кг. Между содержанием креатинфосфата и образованием у него креатинина существует прямолинейная зависимость. Следовательно, с помощью креатининового коэффициента можно оценить потенциальные возможности этого пути ресинтеза АТФ.

Биохимические сдвиги в организме, обусловленные накоплением молочной кислоты в результате гликолиза. Если в покое до начала мы шечной деятельности концентрация лактата в крови составляет 1- 2 ммоль/л, то после интенсивных, непродолжительных нагрузок в течение 2-3 мин эта величина может достигать 18-20 ммоль/л. Другим показателем, отражающим накопление в крови молочной кислоты, служит показатель крови (рН): в покое 7,36, после нагрузки снижение до 7,0 и более. Накопление лактата в крови определяет и ее щелочной резерв - щелочные компоненты всех буферных систем крови.

Окончание интенсивной мышечной деятельности сопровождается снижением потребления кислорода - вначале резко, затем более плавно. В связи с этим выделяют два компонента кислородного долга: быстрый (алактатный) и медленный (лактатный). Лактатный - это то количество кислорода, которое используется после окончания работы для устранения молочной кислоты: меньшая часть окисляется до J-bO и СОа, большая часть превращается в гликоген. На это превращение тратится значительное количество АТФ, которая образуется аэробным путем за счет кислорода, составляющего лактатный долг. Метаболизм лактата осуществляется в клетках печени и миокарда.

Количество кислорода, необходимое для полного обеспечения выполняемой работы, называют кислородным запросом. Например, в беге на 400 м кислородный запрос, равен приблизительно 27 л. Время про-бегания дистанции на уровне мирового рекорда составляет около 40 с. Исследования показали, что за это время спортсмен поглощает 3-4 л 02. Следовательно, 24 л - это общий кислородный долг (около 90% кислородного запроса), который ликвидируется после забега.

В беге на 100 м кислородный долг может доходить до 96% запроса. В беге на 800 м доля анаэробных реакций несколько снижается - до 77%, в беге на 10 000 м - до 10%, т.е. преобладающая часть энергии поставляется за счет дыхательных (аэробных) реакций.

Механизм мышечного расслабления. Как только в мышечное волокно перестают поступать нервные импульсы, ионы Са^ под действием так называемого кальциевого насоса за счет энергии АТФ уходят в цистерны саркоплазматического ретикулюма и их концентрация в саркоплазме понижается до исходного уровня. Это вызывает изменения конформации тропонина, который, фиксируя тропомиозин в определенном участке актиновых нитей, делает невозможным образование поперечных мостиков между толстыми и тонкими нитями. За счет упругих сил, возникающих при мышечном сокращении в коллагеновых нитях, окружающих мышечное волокно, оно при расслаблении возвращается в исходное состояние. Таким образом, процесс мышечного расслабления, или релаксации, так же, как и процесс мышечного сокращения, осуществляется с использованием энергии гидролиза АТФ.

В ходе мышечной деятельности в мышцах поочередно происходят процессы сокращения и расслабления и, следовательно, скоростно-силовые качества мышц в равной мере зависят от скорости мышечного сокращения и от способности мышц к релаксации.

Краткая характеристика гладких мышечных волокон. В гладких мышечных волокнах отсутствуют миофибриллы. Тонкие нити (актиновые) соединены с сарколеммой, толстые (миозиновые) находятся внутри мышечных клеток. В гладких мышечных волокнах отсутствуют также цистерны с ионами Са. Под действием нервного импульса ионы Са медленно поступают в саркоплазму из внеклеточной жидкости и также медленно уходят после того, как прекращают поступать нервные импульсы. Поэтому гладкие мышечные волокна медленно сокращаются и медленно расслабляются.

Общий обзор скелетных мышц человека. Мышцы туловища (рис. 2.6 и 2.7) включают мышцы грудной клетки, спины и живота. Мышцы грудной клетки участвуют в движениях верхних конечностей, а также обеспечивают произвольные и непроизвольные дыхательные движения. Дыхательные мышцы грудной клетки называются наружными и внутренними межреберными мышцами. К дыхательным мышцам относится также и диафрагма. Мышцы спины состоят из поверхностных и глубоких мышц. Поверхностные обеспечивают некоторые движения верхних конечностей, головы и шеи. Глубокие («выпрямители туловища») прикрепляются к остистым отросткам позвонков и тянутся вдоль позвоночника. Мышцы спины участвуют в поддержании вертикального положения тела, при сильном напряжении (сокращении) вызывают прогибание туловища назад. Брюшные мышцы поддерживают давление внутри брюшной полости (брюшной пресс), участвуют в некоторых движениях тела (сгибание туловища вперед, наклоны и повороты в стороны), в процессе дыхания.

Мышцы головы и шеи - мимические, жевательные и приводящие в движение голову и шею. Мимические мышцы прикрепляются одним своим концом к кости, другим - к коже лица, некоторые могут начинаться и оканчиваться в коже. Мимические мышцы обеспечивают движения кожи лица, отражают различные психические состояния человека, сопутствуют речи и имеют значение в общении. Жевательные мышцы при сокращении вызывают движение нижней челюсти вперед и в стороны. Мышцы шеи участвуют в движениях головы. Задняя группа мышц, в том числе и мышцы затылка, при тоническом (от слова «тонус») сокращении удерживает голову в вертикальном положении.

Рис. 2.6. Мышцы передней половины тела (по Сыльвановичу):

1 - височная мышца, 2 - жевательная мышца, 3 - грудино-ключично-сосцевидная мышца, 4 - большая грудная мышца, 5 - средняя лестничная мышца, б - наружная косая мышца живота, 7 - медиальная широкая мышца бедра, 8 - латеральная широкая мышца бедра, 9 - прямая мышца бедра, 10 - портняжная мышца, 11 - нежная мышца, 12 - внутренняя косая мышца живота, 13 - прямая мышца живота, 14 - двуглавая Мышца плеча, 15 ~ наружные межреберные мышцы, 16 - круговая мышца рта, 17 - круговая мышца глаза, 18 - лобная мышца

Мышцы верхних конечностей обеспечивают движения плечевого пояса, плеча, предплечья и приводят в движение кисть и пальцы. Главными мышцами-антагонистами являются двуглавая (сгибатель) и трехглавая (разгибатель) мышцы плеча. Движения верхней конечности и прежде всего кисти чрезвычайно многообразны. Это связано с тем, что рука служит человеку органом труда.

Рис. 2.7. Мышцы задней половины тела (по Сыльвановичу):

1 - ромбовидная мышца, 2 - выпрямитель туловища, 3 - глубокие мышцы ягодичной мышцы, 4 - двуглавая мышца бедра, 5 - икроножная мышца, 6 - ахиллово сухожилие, 7 - большая ягодичная мышца, 8 - широчайшая мышца скипы, 9 - дельтовидная мышца, 10 - трапециевидная мышца

Мышцы нижних конечностей обеспечивают движения бедра, голени и стопы. Мышцы бедра играют важную роль в поддержании вертикального положения тела, но у человека они развиты сильнее, чем у других позвоночных. Мышцы, осуществляющие движения голени, расположены на бедре (например, четырехглавая мышца, функцией которой является разгибание голени в коленном суставе; антагонист этой мышцы - двуглавая мышца бедра). Стопа и пальцы ног приводятся в движение мышцами, расположенными на голени и стопе. Сгибание пальцев стопы осуществляется при сокращении мышц, расположенных на подошве, а разгибание - мышцами передней поверхности голени и стопы. Многие мышцы бедра, голени и стопы принимают участие в поддержании тела человека в вертикальном положении.

Мышечная деятельность – сокращение и расслабление протекают при обязательном использовании энергии, которая выделяется при гидролизе АТФ АТФ + Н 2 0 АДФ + Н 3 Р0 4 + энергия в покое концентрация АТФ в мышцах около 5 ммоль/л и соответственно 1 ммоль АТФ соответствует в физиологических условиях примерно 12 кал или 50 Дж (1 кал = 4,18 Дж)


Масса мышц у взрослого человека составляет около 40% от массы тела. У спортсменов, наращивающих мускулатуру, мышечная масса может достичь 60% и более от массы тела. Мышцы у взрослого человека в состоянии покоя потребляют около 10% от всего кислорода, поступающего в организм. При интенсивной работе потребление кислорода мышцами может возрасти до 90% от всего потребляемого кислорода.






Источниками энергии для аэробного ресинтеза АТФ являются углеводы, жиры и аминокислоты, распад которых завершается циклом Кребса. Цикл Кребса - это завершающий этап катаболизма, в ходе которого происходит окисление ацетил кофермента А до С02 и Н20. В ходе этого процесса от кислот (изолимонная, а-кетоглутаровая, янтарная и яблочная кислота)отнимается 4 пары атомов водорода и поэтому образуется 12 молекул АТФ при окислении одной молекулы ацетил кофермента А.






АНАЭРОБНЫЕ ПУТИ РЕСИНТЕЗА АТФ Анаэробные пути ресинтеза АТФ (Креатинфосфатный, гликолитический) являются дополнительными способами образования АТФ в тех случаях, когда основной путь получения АТФ - аэробный - не может обеспечить мышечную деятельность необходимым количеством энергии. Это бывает на первых минутах любой работы, когда тканевое дыхание еще полностью не развернулось, а также при выполнении физических нагрузок высокой мощности.




Гликолитический путь ресинтеза АТФ Этот путь ресинтеза, так же как и Креатинфосфатный, относится к анаэробным способам образования АТФ. Источником энергии, необходимой для ресинтеза АТФ, в данном случае является мышечный гликоген, концентрация которого в саркоплазме колеблется в пределах 0,2-3%. При анаэробном распаде гликогена от его молекулы под воздействием фермента фосфорилазы поочередно отщепляются концевые остатки глюкозы в форме глюкозо-1-фосфата. Далее молекулы глюкозо-1-фосфата через ряд последовательных стадий (их всего 10) превращаются в молочную кислоту (лактат)


Аденилаткиназная (миокиназная) реакция Аденилаткиназная (или миокиназная) реакция протекает в мышечных клетках в условиях значительного накопления в них АДФ, что обычно наблюдается при наступлении утомления. Аденилаткиназная реакция ускоряется ферментом аденилаткиназой (миокиназой), который находится в саркоплазме миоцитов. В ходе этой реакции одна молекула АДФ передает свою фосфатную группу на другую АДФ, в результате образуется АТФ и АМФ: АДФ + АДФ АТФ + АМФ




Работа в зоне максимальной мощности Продолжаться в течение с. Основной источник АТФ в этих условиях - креатинфосфат. Только в конце работы креатин фосфатная реакция замещается гликолизом. Примером физических упражнений, выполняемых в зоне максимальной мощности, является бег на короткие дистанции, прыжки в длину и высоту, некоторые гимнастические упражнения, подъем штанги


Работа в зоне субмаксимальной мощности Продолжительность до 5 мин. Ведущий механизм ресинтеза АТФ - гликолитический. В начале работы, пока гликолиз не достиг максимальной скорости, образование АТФ идет за счет креатинфосфата, а в конце работы гликолиз начинает заменяться тканевым дыханием. Работа в зоне субмаксимальной мощности характеризуется самым высоким кислородным долгом -до 20 л. Примером физических нагрузок в этой зоне мощности является бег на средние дистанции, плавание на короткие дистанции, велосипедные гонки на треке, бег на коньках на спринтерские дистанции


Работа в зоне большой мощности Продолжительность до 30 мин. Для работы в этой зоне характерен примерно одинаковый вклад гликолиза и тканевого дыхания. Креатинфосфатный путь ресинтеза АТФ функционирует только в самом начале работы, и поэтому его доля в общем энергообеспечении данной работы мала. Примером упражнений в этой зоне мощности является бег на 5000 м бег на коньках на стайерские дистанции, лыжные гонки по пересеченной местности, плавание на средние и длинные дистанции


Работа в зоне умеренной мощности Продолжается свыше 30 мин. Энергообеспечение мышечной деятельности происходит преимущественно аэробным путем. Примером работы такой мощности является марафонский бег, легкоатлетический кросс, спортивная ходьба, шоссейные велогонки, лыжные гонки на длинные дистанции.


Полезная информация В Международной системе единиц (СИ) основной единицей энергии является джоуль (Дж), а единицей мощности - ватт (Вт). 1 джоуль (Дж) = 0,24 калории (кал). 1 килоджоуль (к Дж) = 1000 Дж. 1 калория (кал) = 4,184 Дж. 1 килокалория (ккал) = 1000 кал = 4184 Дж. 1 ватт (Вт) = 1 Дж-с"1 = 0,24 кал-с-1. 1 киловатт (к Вт) = 1000 Вт. 1 кг-м-с"1 = 9,8 Вт. 1 лошадиная сила (л. с.) = 735 Вт. Для выражения мощности путей ресинтеза АТФ в Дж/мин-кг необходимо значение этого критерия в кал/мин-кг умножить на 4,18, а для получения величины мощности в Вт/кг - умножить на 0,07.

КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «volonterraiona.ru» — Кирпичи. Блоки. Утеплители. Материалы. Изоляция