Общая характеристика математических методов в научных исследованиях. Математические методы и модели в социальных науках: закономерности, специфика и этапы применения Принципы применения математических методов

1

В статье рассмотрено применение экономико-математических методов в экономических расчетах при решении многовариантных заданий, для расширения возможностей анализа сложных проблем социально-экономического развития. Для облегчения действий в расчетах при решении экономических задач применяют ЭВМ, которая значительно облегчает вычисление. Авторы указывают на то, что для решения задач в конъюктурно-экономической работе применяются многоцелевые экономические методы. При этом применение способа факторного, взаимосвязанного и регрессивного анализа и автоматизированных расчётов стоимости на машинно-техническую продукцию и при исследовании мониторингов является особо важным моментом при решении экономических задач. Применение современных экономико-математических методов и электронно-вычислительной техники решает задачи производства и потребления, например, нефтепродуктов каждого НПЗ. При разработке проектов и плановых решений вместо применения современных методов, и их обоснований в действующих предприятиях чаще всего применяются традиционные экономико-математические методы. Однако они уже недостаточны для обеспечения эффективного и сбалансированного развития деятельности предприятия. Наряду с традиционными экономико-математическими методами планирования применяются современные методы, такие как, например, методы математической статистики, математического программирования, образовывая экономико-математическую модель исследования.

экономико-математические методы

экономические процессы

математический анализ

методы математической статистики

итерация.

1. Гулай Т.А., Долгополова А.Ф., Мелешко С.В. Математические методы исследования экономических процессов // Международный журнал экспериментального образования. – 2016. – № 12–1. – С. 116–117.

2. Гулай Т.А., Литвин Д.Б., Попова С.В., Мелешко С.В. Прогнозирование в регрессионном анализе при построении статистических моделей экономических задач с помощью программы MICROSOFT EXCEL // Экономика и предпринимательство. – 2017. – № 8–2 (85–2). – С. 688–692.

3. Жиляков Е.Г., Перлов Ю.М. Основы эконометрического анализа данных: Учебное пособие, 2014.

4. Манько А.И., Долгополова А.Ф., Гулай Т.А., Мелешко С.В. Математические методы в экономических исследованиях: Рабочая тетрадь – Ставрополь, 2015.

5. Орлова, И.В. Экономико-математические методы и модели: компьютерное моделирование: Учебное пособие / И.В. Орлова. – М.: Вузовский учебник, НИЦ ИНФРА – М, 2013. – 389 c.

6. Попов А.М., Сотников В.Н. Экономико-математические методы и модели.: Юрайт-Издат, 2015. – 479 с.

7. Федосеев В.В. Экономико-математические методы – М.: Финстатинформ, 2015. – 254 с.

Математические методы в последнее время используются с целью управления, планирования, бухгалтерского учёта, статистики, экономического анализа. Для решения множества экономических, инженерных заданий на практике возможно лишь применение математического программирования и моделирования, но невозможно без использования счётной техники. В решении сложных экономических задач на помощь пришло применение сконструированное, быстродействующее ЭВМ.

Экономико-математические методы - это новейшее научное течение, применяемое при решении многовариантных заданий, для расширения возможностей анализа сложных проблем социально-экономического развития, которые значительно облегчают разработку планов. ЭВМ существенно меняет технологию планирования, работая только по точно заданным схемам расчетов, алгоритмам. На основе алгоритмов разрабатываются математические модели процессов, которые являются условием внедрения кибернетики в народное хозяйство. Математический анализ экономики в сравнении с применением математики в физике или технике значительно труднее и требует аналогичного решения исследования наиболее подходящих математических методов. Для ЭВМ всегда используется метод эвристического решения. Расчётную формулу или исходные данные разделяют так, чтобы задание было из элементарных операций, которые машина в установленной последовательности будет воплощать .

Для решения задач в конъюктурно-экономической работе применяются многоцелевые экономические методы. В данном отношении показательно применение способа факторного, взаимосвязанного и регрессивного анализа и автоматизированных расчётов стоимости на машинно-техническую продукцию и при исследовании мониторингов. Структура данной операции показала трудность в раскрытии этапов процесса принятия решений. Процедура умозаключительного обоснования принятия решений предполагает собой общее единство. Трансформация содержания одного этапа согласовывается с другими стадиями и их связями между собой .

При использовании математических методов этот факт зачастую отсутствует. Результат математического метода стремятся показать как решение конкретной управленческой задачи, несмотря на то, что он является одним из этапов процесса принятия решения из двенадцати существующих. Это вызвано общим рассмотрением всех этапов решения управленческой задачи. Во избежание недостатков чётко разграничивается место и роль каждого отдельного метода.

В СССР в 1970-1990 гг. существовало достаточное количество моделей, нацеленных на разрешение оптимизационных задач надёжности с целью долгосрочного становления трудоемких электроэнергетических систем. Для решения надёжности электроэнергетических систем была достаточная степень развития вычислительной техники и в их управлении применялись упрощённые инженерные методики. Данная, непосредственным способом отражалась в правдивости, получаемых показателей надёжности и принимаемых на этой базе проектных выводов. В современности широко применяются персональные компьютеры, улучшающие роль математических методов в решении задач по надёжности ЭЭС в их управлении и отменяющие практическое применение инженерных методик.

В сфере бизнеса, в ситуациях неопределённости Г. Маркович сосредоточил внимание и применил математику и компьютерную технику в решении практических задач в экономике. Он вёл сотрудничество с экономистами РЭНД Корпорэйшн, а также разработал приложение методов математики к анализу фондовых рынков. Проделав масштабную работу, которая стала его диссертацией, написанная в 1950 г. Гарри Маркович стал одним из родоначальников теории финансов, которая явилась развитием в системе экономической науки, в дальнейшем ставшей практической основой финансового управления фирмой.

Сущность концепции, участвующая в приведённом установлении под именем организационных, и их единые математические модели обретают применение не только при решении производственных и финансовых вопросов, но и в биологии, социологических изучениях и иных практических областях. Главными отличительными свойствами автоматизированной системы управления считается осуществление планово-финансовых расчетов с применением экономико-математических методов, с поддержкой которых формируется единая формальная модель управления объектом.

Производится постоянная математическая подготовка альтернатив возможных решений, но принятие конечного решения остается за человеком. Конкретные функции управления имеют все шансы реализоваться в автоматическом режиме, то есть без участия человека. Это значительно упрощает составление плана материально-технического обеспечения с использованием экономико-математических методов в рамках отдельной организации. При наличии утверждённого плана производства продукции на предприятии, а также составление плана снабжения, существует норма расхода материальных ресурсов, нормативы для видов производственных запасов, сводимых к решению автономных планово-экономических задач, методом умножения, измерения, методом сортировки и т.д.

Для изменения показателей в условиях автоматизированной системы плановых расчетов с помощью экономико-математических методов ЭВМ появляется вероятность отражения разных сторон хозяйственной и социальной деятельности, шире диапазон расчётов степеней и норм применения материальных, трудовых и финансовых ресурсов. Увеличение задач планирования решенных в автоматизированном режиме усложняет методы их решения, а также увеличивает требования к объему применяемых данных и составу расчётных показателей. А те показатели, которые не используются в решении планово-экономических задач, выявляются и при возможности исключаются из плановой и отчетной документации.

Для того чтобы применить модели к внедрению, которые позволят выполнять расчёты без участия автора-создателя, необходимо снабжение методическими указаниями и инструкциями, которые позволяют пользователю без помощи других устанавливать ее на решение определенной задачи. При эксплуатации в первой очереди АСПР рассматривалась документация, считавшаяся обязательным условием сдачи материального снабжения. В состав этих групп входили представители отделов Госплана. Из собранного ими навыка уделялся особый интерес формированию второй очереди АСПР к технической технологичности внедряемых задач.

Автоматизируемые планово-экономические задачи относились к задачам прямой обработки данных, не требующих применения специальных математических методов решения. Экономико-математические модели, в которых используются методы матричной алгебры, линейного программирования, математической статистики и др., задача прямой обработки данных происходят на ЭВМ больших объемов информации при помощи простейших алгоритмов, а также преобразований по элементарным формулам .

Применение современных экономико-математических методов и электронно-вычислительной техники решает задачи производства и потребления нефтепродуктов каждого НПЗ. Для этого необходимо уточнение математической модели решения и разработки некоторых методологических вопросов, точная методика определения технико-экономических показателей и других задач, без которых невозможна оптимизация. При анализе выявлено, что при разработке проектов и плановых решений вместо применения современных методов, и их обоснований в действующих предприятиях чаще всего применяются традиционные методы. Традиционные методы в новых рыночных условиях уже недостаточны, для того чтобы обеспечить эффективное и сбалансированное развитие деятельности предприятия. Наряду с традиционными методами планирования применяются современные методы, так как необходимо совершенствование технологий планирования и это является важным направлением. Для научных и практических выводов основой являются экономические задачи, решаемые методами математической статистики систематической и обработанной к использованию данных. Очень важным элементом для экономического исследования является анализ и построение взаимосвязей экономических переменных, которые осложнены тем, что они не являются строгими функциональными зависимостями. В данных обстоятельствах математическая статистика дает возможность конструировать экономические модели и проводить оценку их параметров, исследовать их гипотезы о свойствах экономических показателей, их взаимосвязи, что в итоге служит базой для экономического анализа и моделирования, формируя вероятность с целью принятия аргументируемых экономических решений. На статистические исследования вероятно-случайных явлений влияет теория вероятностей .

С целью решения аналогичных задач вероятно употребление специальных компьютерных систем и финансового экономического моделирования. В ходе формирования бизнес-плана широко используются экономико-математические методы. Качество бизнес-планов усовершенствуется вследствие правильного подбора и результативного применения компьютерных программ.

Итерация - это повторное применение математической операции при решении вычислительных задач для постепенного приближения к нужному результату. Чем меньше пересчетов, тем быстрее сходится алгоритм. При рассмотрении с точки зрения необходимости и возможности применения математических методов в аналитических целях решена проблема соединения теории принятия управленческих решений с анализом хозяйственной деятельности. На случай, если при решении новейших, мало решенных проблем, математические методы способны сыграть незначительную роль, то при структурируемых проблемах анализа хозяйственной деятельности, раскрывается потенциал исследования значимости и роли абсолютно всех экономико-математических методов. Такой метод изучения в комбинации с классическими методами содержательного анализа обязан реализовать теоретическую и практическую задачу. Для того, чтобы иметь возможность получать непредвзятую картину становления общества и ускорить достоверность и подлинность выводов социально-экономических исследований к точности и правдивости в выводах естественных наук, необходимо обширнее вовлекать инновационные формальные, количественные методы в интересах изучения и моделирования социально-экономических процессов.

Те задачи, при решении которых нет противоречий, успешно решаются методами, описанными ранее. Если возникают проблемы при решении, то методы, изложенные выше недостаточны. Приходится прибегать к дополнительным подходам, с применением математической дисциплины - теории игр. Французский математик Э.Борель в 20-х годах XX века первым раскрыл круг этих вопросов при исследовании. Но огромный интерес данные работы не привлекли и принято считать появлением на свет теории игр 1944 год, когда была выпущена книга Д. фон Неймана и О. Моргенштерна, базирующаяся на ранней работе Неймана. Её развитие способствовало изучению различных военных, а также экономических задач во время второй Мировой войны и в послевоенный период. На счету теории игр к настоящему времени сделано большое количество решенных трудных и немаловажных задач. Возможно произвести подсчет результативности использования приборов, которые не применяются в качестве средств труда в технологических процессах. С целью излечения результатов примем в качестве образца счётно-решающие приборы, производящие математические операции. Сфера использования счётно-решающих устройств в технике многообразна. В одном случае современные ЭВМ могут решать задания существенно быстрее, в другом случае они могут оперативно давать числовые решения дифференциальных уравнений, которые невозможно решить иными способами .

Приборы стимулируют развитие таких сфер математики, где вероятность использования простых методов анализа ограничена. Присутствие технологических ограничений, ограничений материальных ресурсов предоставят максимальный финансовый результат. Данная постановка задач решается на ЭВМ с помощью математического программирования, образовывая экономико-математическую модель исследования.

Впервые технология DEA - Data Envelopment Analysis была предложена в 1978 году для анализа деятельности фирм. В этой технологии используются достижения в области математического программирования, теории и методов решения задач оптимизации, а также современные средства программного обеспечения. Чтобы использовать технологию DEA-Data Envelopment Analysis для подземных хранилищ газа, месторождений, насосных станций, компрессорных и других объектов нефтяной и газовой промышленности, необходима оценка и сравнительный финансово-экономический анализ для дальнейшего развития и применения в нашей стране.

Библиографическая ссылка

Богданова Д.С., Жукова В.А., Нестеренко Н.И. ПРИМЕНЕНИЕ МАТЕМАТИЧЕСКИХ МЕТОДОВ В ЭКОНОМИЧЕСКИХ РАСЧЕТАХ // Международный студенческий научный вестник. – 2018. – № 3-1.;
URL: http://eduherald.ru/ru/article/view?id=18199 (дата обращения: 17.09.2019). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

Работы, посвященные исследованию методологических проблем применения математики в социологии, охватывают множество вопросов, которые, в свою очередь, требуют определенной классификации. Не претендуя на бесспорность, можно выделить следующие разделы методологических проблем задействования математических методов в социологии, следуя в основном хронологическому порядку их постановки в российской литературе.

Во-первых, роль статистических закономерностей в конкретных социологических исследованиях.

Во-вторых, возможности и перспективы использования математики в социологии.

В-третьих, методологические проблемы выборки, измерения, анализа данных и моделирования в социологии.

Последний круг вопросов связан с общей, данной выше классификацией области применения математических методов в социологии. В силу этого методологическое рассмотрение данного круга проблем уместно объединить с обсуждением специальных вопросов.

Первоначально дискуссия ученых исходила из двух точек зрения. Согласно первой точке зрения статистика - это исключительно социально-экономическая наука, использующая некоторые математические методы. В силу второй точки зрения статистика - универсальная наука, изучающая массовые случайные процессы безотносительно к их специфике.

В ходе дискуссии были поставлены новые важные проблемы. Во- первых, проблема объективности статистических закономерностей в сфере социальной жизни общества и необходимости использования общей и математической статистики при проведении конкретных социологических исследований; во-вторых, проблема специфичности действия статистических законов в обществе.

Те стороны массовых социальных явлений и процессов, которые получают и могут получить количественное выражение, становятся предметом статистики. Новый подход к этим массовым явлениям и процессам требует поиска содержательной специфики случайного и статистического в социальной действительности. Неправомерно подходить к экономическим и социальным явлениям с мерками, заимствованными из области изучения явлений природы. Статистическая совокупность, с которой работает социолог, существенно отличается от совокупности, с которой имеет дело натуралист.

В связи с применением математики в сфере социального научного знания, с вхождением в социологию многообразных математических методов перед социологами, экономистами и математиками встал вопрос об оценке возможностей и перспектив применения математики в социологических исследованиях.

Рассматривая связи и преемственность использования математических методов в социологии и других социальных науках - психологии, лингвистике, демографии, российские ученые обращают внимание на тот факт, что количественные методы выступают как необходимый этап социологического исследования, который связан с поисками новых методов, реализацией новейших достижений математики.

Трудности применения математики в социологии обусловлены сложностью социальных явлений, а также тем, что социолог постоянно имеет дело с фактами не только объективными, но и субъективными, перевод которых в количественную форму требует разработки специального математического аппарата.

Кроме того, трудности связаны с тем, что в общественных науках связь между наблюдаемым явлением и наблюдателем очень трудно свести к минимуму. С одной стороны, наблюдатель может оказывать значительное влияние на явления, привлекшие его внимание. С другой стороны, ученый-социолог не может взирать на свои объекты с холодных высот вечности и вездесущности. Иными словами, в общественных науках мы имеем дело с короткими статистическими рядами и не можем быть уверены, что значительная часть наблюдаемого нами не создана нами самими.

Наконец, эти трудности связаны с тем, что социология изучает явления, которые характеризуются и количественными, и качественными переменными. Это ставит перед социологией проблему измерения качественных величин.

Иногда ссылаясь на еще несовершенные и весьма приближенные результаты применения математических теорий, например теории игр, в социологии, некоторые ученые указывают на несоответствие математического аппарата социальной структуре. При этом они обычно интуитивно сравнивают стройность и строгость математики, применяющейся в физике и астрономии в XVIII и XIX вв., и сложность, неопределенность и неэффективность математического аппарата социологии XX в.

Если иметь в виду такое сопоставление, то действительно можно отметить, что в социологии нет законов, аналогичных законам И. Ньютона и А. Эйнштейна, для области социальных явлений нет математической теории, подобной теории классической или квантовой механики. Причина тут кроется, видимо, в несравненно большей сложности и изменчивости социальных объектов. На наш взгляд, было бы большим заблуждением думать, что когда-нибудь в отношении общества будут найдены уравнения, подобные уравнениям классической механики.

В последние годы все больший вес приобретает обсуждение методологических проблем использования новейших математических методов, выросших в рамках математической статистики, технической кибернетики, математической экономики. Представляет интерес обсуждение методологических проблем применения методов распознавания образов в конкретных социальных исследованиях.

Эти задачи перспективны, по нашему мнению, в двух основных направлениях. Во-первых, их решение позволяет получать сложные статистические критерии классификации полипараметрических объектов, которые в дальнейшем можно использовать в автоматизированных системах управления социальными системами. Во-вторых, их решение дает информативный набор признаков, описывающих ситуации, подлежащие классификации, что позволит в дальнейшем увеличить надежность классификации.

В последнее время начинают все более интенсивно обсуждаться проблемы применения математических методов в социальном исследовании как этапе и инструменте социального управления и планирования. Математическое обеспечение конкретного социологического исследования становится необходимостью на пути отыскания и реализации народно-хозяйственного оптимума.

Суть и определение математических методов исследования экономики

Определение 1

Экономико-математическое моделирование - это концентрированное выражение наиболее существенных взаимосвязей и закономерностей поведения управляемой системы в математической форме.

На сегодняшний день существует целый ряд видов и модификаций методов экономико-математического моделирования. В системе управления инновационным развитием промышленного предприятия применяется значительное их количество. Рассмотрим основные классификационные подходы к методам моделирования.

По отрасли и целью использования методы экономико-математического моделирования различают на:

  1. теоретико-аналитические - анализируют общие свойства и закономерности;
  2. прикладные - применяются при решении конкретных экономических задач анализа и управления.

Классификация методов моделирования

По типу подхода к социально-экономическим системам: дескриптивные модели - предназначены для описания и объяснения явлений, которые фактически наблюдаемых или для прогноза этих явлений; нормативные модели - показывает развитие экономической системы в разрезе влияния определенных критериев.

По способу отражения реальных объектов: функциональные модели - субъект моделирования пытается достичь сходства модели и оригинала только в понимании того, что они выполняют те же функции; структурные модели - субъект моделирования пытается воссоздать внутреннюю построение моделируемой, и за счет более точного отображения структуры получить более точное отображение функции.

По учету фактора времени: статические модели - все зависимости относятся к одному моменту времени; динамические модели - описывают экономические системы в развитии. По типу используемой в модели: аналитические модели - задаются на основе априорной информации, строятся с учетом существующих закономерностей, записанных в формально-теоретическом виде; модели, идентифицируются - построены на результатах наблюдений за объектами.

По ступеням использования типовых элементов: модели с фиксированной структурой - процесс моделирования сводится к подбору и настройке значений параметров типовых блоков; модели с переменной структурой - структура модели создается при моделировании и не является типичной.

По характеристике математических объектов, включенных в модели (особенности каждого вида обусловлены типом математического аппарата, используемого в модели): матричные модели; структурные модели; сетевые модели; модели линейного и нелинейного программирования; факторные модели; комбинированные; модели теории игр и т.д.

По способу представления или описания модели: модели, представленные в аналитической форме - модели подаются на языке математики; модели, представленные в виде алгоритма - реализуются численно или с помощью программного обеспечения; имитационные модели - численная реализация соотношений, составляющих модель, осуществляется без предварительных преобразований, в процессе имитации алгоритм расчетов воспроизводит логику функционирования объекта-оригинала.

По ожидаемым результатом: модели, в которых минимизируются затраты - ожидаемый конечный результат опирается на минимизацию затрат; модели, в которых минимизируется конечный результат - модели, в которых целью поставлено уменьшение показателей, характеризующих объект исследования (если эти показатели направлены до максимума) или увеличить значение показателей (если эти показатели направлены в минимизации).

Место математических методов исследования в управлении предприятием

При изучении методов экономико-математического моделирования в разрезе прогнозирования инновационного развития промышленных предприятий возникает необходимость их адаптации к реальным экономическим условиям современности, выдвигает рыночную среду и основы стратегического маркетингового управления. Так, формализованные методы прогнозирования целесообразно сочетать с аналитическими методами, которые могут качественно охватить всю проблематику рыночной среды.

Замечание 1

Экономико-математические модели оптимизации включают одну целевую функцию, формализует критерий оптимальности, по которому среди допустимых планов выбирается наилучший, а ограничения по переменных определяют множество допустимых планов.

Так, составным элементом текущего плана предприятия является план производства или производственная программа, включает систему плановых показателей производства по объему, ассортименту и качеству продукции. Ведь важным этапом разработки производственной программы является формирование оптимальной структуры портфеля продукции предполагает определение такого объема, номенклатуры и ассортимента продукции, которые бы обеспечили предприятию эффективное использование имеющихся ресурсов и получения удовлетворительного финансового результата.

Утверждение портфеля продукции и ресурсов на ее изготовление происходит благодаря применению экономико-математических методов, к которым предъявляются определенные требования. Прежде всего, они должны быть тождественными внешним условиям рынка, а также учитывать разнообразие путей достижения главной цели предприятия - максимизации прибыли.

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

Государственное образовательное учреждение высшего профессионального образования «Уральский государственный университет им. »

Исторический факультет

Кафедра документационного и информационного обеспечения управления

Математические методы в научных исследованиях

Программа курса

Стандарт 350800 «Документоведение и документационное обеспечение управления»

Стандарт 020800 «Историко-архивоведение»

Екатеринбург

Утверждаю

Проректор

(подпись)

Программа дисциплины «Математические методы в научных исследованиях» составлена в соответствии с требованиями вузовского компонента к обязательному минимуму содержания и уровню подготовки:

дипломированного специалиста по специальности

Документоведение и документационное обеспечение управления (350800),

Историко-архивоведение(020800),

по циклу «Общие гуманитарные и социально-экономические дисциплины» государственного образовательного стандарта высшего профессионального образования.

Семестр III

По учебному плану специальности № 000– Документоведение и документационное обеспечение управления:

Общая трудоемкость дисциплины: 100 часов,

в том числе лекций 36 часа

По учебному плану специальности № 000– Историко – архивоведение

Общая трудоемкость дисциплины: 50 часов,

в том числе лекций 36 часа

Контрольные мероприятия :

Контрольные работы 2 чел/час

Составитель: , канд. ист. наук, доцент кафедры документационного и информационного обеспечения управления Уральского государственного университета


кафедры Документационного и информационного обеспечения управления

от 01.01.01 г. № 1.

Согласовано:

Зам. председателя

Гуманитарного совета

_________________

(подпись)

(С) Уральский государственный университет

(С) , 2006

ВВЕДЕНИЕ

Курс “Математические методы в социально-экономических исследованиях“ предназначен для ознакомления студентов с основными приемами и способами обработки количественной информации, разработанными статистикой. Его основная задача - расширить методический научный аппарат исследователей, научить применять в практической и научно-исследовательской деятельности помимо традиционных методов, основных на логическом анализе, математические методы , которые помогают количественно охарактеризовать исторические явления и факты.

В настоящее время математический аппарат и математические методы используются практически во всех областях науки. Это закономерный процесс, его часто называют - математизация науки. В философии математизация обычно понимается как применение математики в различных науках. Математические методы давно и прочно вошли в арсенал методов исследования ученых, используются для обобщения данных, выявления тенденций и закономерностей развития общественных явлений и процессов, типологии и моделирования.

Знание статистики необходимо, чтобы правильно охарактеризовать и проанализировать процессы, происходящие в экономике и обществе. Для этого необходимо владеть выборочным методом, сводкой и группировкой данных, уметь рассчитать средние и относительные величины , показатели вариации , коэффициенты корреляции. Элементом информационной культуры выступают навыки правильного оформления таблиц и построения графиков, которые представляют собой важный инструмент систематизации первичных социально-экономических данных и наглядного представления количественной информации. Для оценки временных изменений необходимо иметь представление о системе динамических показателей.

Использование методики проведения выборочного исследования позволяет изучить большие массивы информации, представленные массовыми источниками, экономить время и труд, получая при этом научно значимые результаты.

Математико-статистические методы занимают вспомогательные позиции, дополняя и обогащая традиционные методы социально-экономического анализа, их освоение является необходимой составной частью квалификации современного специалиста – документоведа, историка-архивиста.

В настоящее время математико-статистические методы активно применяются в маркетинговых, социологических исследованиях , при сборе оперативной управленческой информации, составлении отчетов и проведении анализа документопотоков.

Навыки количественного анализа необходимы для подготовки квалификационных работ, рефератов и других исследовательских проектов.

Опыт использования математических методов свидетельствует, что их использование должно осуществляться с соблюдением следующих принципов для получения достоверных и репрезентативных результатов:

1) определяющую роль играет общая методология и теория научного познания;

2) необходима четкая и правильная постановка исследовательской задачи;

3) отбор репрезентативных в количественном и качественном отношении социально-экономических данных;

4) корректность применения математических методов, т. е. они должны соответствовать исследовательской задаче и характеру обрабатываемых данных;

5) необходима содержательная интерпретация и анализ полученных результатов, а также обязательная дополнительная проверка полученных в результате математической обработки сведений.


Математические методы помогают усовершенствовать технологию научного исследования: повысить ее эффективность; они дают большую экономию времени, особенно при обработке больших массивов информации, позволяют выявить скрытую информацию, хранящуюся в источнике.

Помимо этого математические методы тесно связаны с таким направлением научно-информационной деятельности как создание исторических банков данных и архивов машиночитаемых данных. Нельзя игнорировать достижения эпохи, а информационные технологии становятся одним из важнейших факторов развития всех сфер общества.

ПРОГРАММА КУРСА

Тема 1. ВВЕДЕНИЕ. МАТЕМАТИЗАЦИЯ ИСТОРИЧЕСКОЙ НАУКИ

Цель и задачи курса. Объективная необходимость совершенствования исторических методов за счет привлечения приемов математики.

Математизация науки, основное содержание. Предпосылки математизации: естественнонаучные предпосылки; социально-технические предпосылки. Границы математизации науки. Уровни математизации для естественных, технических, экономических и гуманитарных наук . Основные закономерности математизации науки: невозможность полностью охватить средствами математики области исследования других наук; соответствие применяемых математических методов содержанию математизируемой науки. Возникновение и развитие новых прикладных математических дисциплин.

Математизация исторической науки. Основные этапы и их особенности. Предпосылки математизации исторической науки. Значение разработки статистических методов для развития исторического знания.

Социально-экономические исследования с использованием математических методов в дореволюционной и советской историографии 20-х годов (, и др.)

Математико-статистические методы в работах историков 60-90-х годов. Компьютеризация науки и распространение математических методов. Создание баз данных и перспективы развития информационного обеспечения исторических исследований. Важнейшие итоги применения методов математики в социально-экономических и историко-культурных исследованиях (, и др.).

Соотношение математических методов с другими методами исторического исследования: историко-сравнительным, историко-типологическим, структурным, системным, историко-генетическим методами. Основные методологические принципы применения математико-статистических методов в исторических исследованиях.

Тема 2 . СТАТИСТИЧЕСКИЕ ПОКАЗАТЕЛИ

Основные приемы и методы статистического изучения общественных явлений: статистическое наблюдение, достоверность статистических данных. Основные формы статистического наблюдения, цель наблюдения, объект и единица наблюдения. Статистический документ как исторический источник.

Статистические показатели (показатели объема, уровня и соотношения), его основные функции. Количественная и качественная сторона статистического показателя. Разновидности статистических показателей (объемные и качественные; индивидуальные и обобщающие; интервальные и моментные).

Основные требования, предъявляемые к расчету статистических показателей, обеспечивающие их достоверность.


Взаимосвязь статистических показателей. Система показателей. Обобщающие показатели.

Абсолютные величины, определение. Виды абсолютных статистических величин, их значение и способы получения. Абсолютные величины как непосредственный результат сводки данных статистического наблюдения.

Единицы измерения, их выбор в зависимости от сущности изучаемого явления. Натуральные, стоимостные и трудовые единицы измерения .

Относительные величины. Основное содержание относительного показателя , формы их выражения (коэффициент, процент, промилле, децимилле). Зависимость формы и содержания относительного показателя.

База сравнения, выбор базы при вычислении относительных величин. Основные принципы вычисления относительных показателей, обеспечение сопоставимости и достоверности абсолютных показателей (по территории, кругу объектов и т. д.).

Относительные величины структуры, динамики, сравнения, координации и интенсивности. Способы их вычисления.

Взаимосвязь абсолютных и относительных величин. Необходимость их комплексного применения.

Тема 3. ГРУППИРОВКА ДАННЫХ. ТАБЛИЦЫ.

Сводные показатели и группировка в исторических исследованиях. Задачи, решаемые данными методами в научном исследовании: систематизация, обобщение, анализ, удобство восприятия. Статистическая совокупность, единицы наблюдения.

Задачи и основное содержание сводки. Сводка - второй этап статистического исследования. Разновидности сводных показателей (простая, вспомогательная). Основные этапы расчета сводных показателей.

Группировка - основной метод обработки количественных данных. Задачи группировки и их значение в научном исследовании. Виды группировок. Роль группировок в анализе общественных явлений и процессов.

Основные этапы построения группировки: определение изучаемой совокупности; выбор группировочного признака(количественные и качественные признаки; альтернативные и неальтернативные; факторные и результативные); распределение совокупности по группам в зависимости от вида группировки (определение количества групп и величины интервалов), шкалы измерения признаков (номинальная, порядковая, интервальная); выбор формы представления сгруппированных данных (текст, таблица, график).

Типологическая группировка, определение, основные задачи, принципы построения. Роль типологической группировки в исследовании социально-экономических типов.

Структурная группировка, определение, основные задачи, принципы построения. Роль структурной группировки в изучении структуры общественных явлений

Аналитическая (факторная) группировка, определение, основные задачи, принципы построения, Роль аналитической группировки в анализе взаимосвязей общественных явлений. Необходимость комплексного использования и изучения группировок для анализа общественных явлений.

Общие требования к построению и оформлению таблиц. Разработка макета таблицы. Реквизиты таблицы (нумерация, заголовок, наименования граф и строк, условные обозначения, обозначение чисел). Методика заполнения сведений таблицы.

Тема 4 . ГРАФИЧЕСКИЕ МЕТОДЫ АНАЛИЗА СОЦИАЛЬНО-ЭКОНОМИЧЕСКОЙ

ИНФОРМАЦИИ

Роль графиков и графического изображения в научном исследовании. Задачи графических методов: обеспечение наглядности восприятия количественных данных; аналитические задачи; характеристика свойств признаков.

Статистический график, определение. Основные элементы графика: поле графика, графический образ, пространственные ориентиры, масштабные ориентиры, экспликация графика.

Виды статистических графиков: линейная диаграмма, особенности ее построения, графические образы; столбиковая диаграмма (гистограмма), определение правила построения гистограмм в случае с равными и неравными интервалами; круговая диаграмма, определение, способы построения.

Полигон распределения признака. Нормальное распределение признака и его графическое изображение. Особенности распределения признаков, характеризующих социальные явления: скошенное, ассиметричное, умеренно ассиметричное распределение.

Линейная зависимость между признаками, особенности графического изображения линейной зависимости. Особенности линейной зависимости при характеристике социальных явлений и процессов.

Понятие тренда динамического ряда. Выявление тренда с помощью графических методов.

Тема 5. СРЕДНИЕ ВЕЛИЧИНЫ

Средние величины в научном исследовании и статистике, их сущность и определение. Основные свойства средних величин как обобщающей характеристики. Взаимосвязь метода средних величин и группировок. Общие и групповые средние. Условия типичности средних. Основные исследовательские задачи, которые решают средние величины.

Способы вычисления средних. Средняя арифметическая - простая, взвешенная. Основные свойства средней арифметической. Особенности расчета средней по дискретному и интервальному рядам распределения. Зависимость способа вычисления средней арифметической в зависимости от характера исходных данных. Особенности интерпретации среднего арифметического показателя.

Медиана - средний показатель структуры совокупности, определение, основные свойства. Определение медианного показателя для ранжированного количественного ряда. Вычисление медианы для показателя, представленного интервальной группировкой.

Мода - средний показатель структуры совокупности, основные свойства и содержание. Определение моды для дискретного и интервального рядов. Особенности исторической интерпретации моды.

Взаимосвязь среднеарифметического показателя, медианы и моды, необходимость их комплексного использование, проверка типичности средней арифметической.

Тема 6. ПОКАЗАТЕЛИ ВАРИАЦИИ

Изучение колеблемости (вариативности) значений признака. Основное содержание мер рассеяния признака, и их использование научно-исследовательской деятельности.

Абсолютные и средние показатели вариации. Вариационный размах, основное содержание, способы вычисления. Среднее линейное отклонение. Среднее квадратичное отклонение, основное содержание, способы расчета для дискретного и интервального количественного ряда. Понятие дисперсии признака.

Относительные показатели вариации. Коэффициент осцилляции, основное содержание, способы расчета. Коэффициент вариации, основное содержание способы расчета. Значение и специфика применения каждого показателя вариации при изучении социально-экономических признаков и явлений.

Тема 7.

Изучение изменений общественных явлений во времени - одна из важнейших задач социально-экономического анализа.

Понятие динамического ряда. Моментные и интервальные динамические ряды. Требования, предъявляемые к построению динамических рядов. Сопоставимость в рядах динамики.

Показатели изменения рядов динамики. Основное содержание показателей рядов динамики. Уровень ряда. Базисные и цепные показатели. Абсолютный прирост уровня динамики, базисный и цепной абсолютные приросты, способы вычисления.

Показатели темпа роста. Базисный и цепной темпы роста. Особенности их интерпретации. Показатели темпа прироста, основное содержание, способы вычисления базисных и цепных темпов прироста.

Средний уровень ряда динамики, основное содержание. Приемы вычисления средней арифметической для моментных рядов с равными и неравными интервалами и для интервального ряда с равными интервалами. Средний абсолютный прирост. Средний темп роста. Средний темп прироста.

Комплексный анализ взаимосвязанных рядов динамики. Выявление общей тенденции развития - тренда: способ скользящей средней, укрупнение интервалов, аналитические приемы обработки рядов динамики. Понятие об интерполяции и экстраполяции рядов динамики.

Тема 8.

Необходимость выявления и объяснения взаимосвязей для изучения социально-экономических явлений. Виды и формы взаимосвязей, изучаемых статистическими методами. Понятие функциональной и корреляционной связи. Основное содержание корреляционного метода и задачи решаемые с его помощью в научном исследовании. Основные этапы корреляционного анализа. Особенности интерпретации коэффициентов корреляции.

Коэффициент линейной корреляции, свойства признаков, для которых может рассчитываться коэффициент линейной корреляции. Способы вычисления коэффициента линейной корреляции для сгруппированных и несгруппированных данных. Коэффициент регрессии , основное содержание, способы расчета, особенности интерпретации. Коэффициент детерминации и его содержательная интерпретация.

Границы применения основных разновидностей корреляционных коэффициентов в зависимости от содержания и формы представления исходных данных. Коэффициент корреляционного отношения. Коэффициент ранговой корреляции. Коэффициенты ассоциации и сопряженности для альтернативных качественных признаков. Приближенные методы определения взаимосвязи между признаками: коэффициент Фехнера. Коэффициент автокорреляции. Информационные коэффициенты.

Способы упорядочения коэффициентов корреляции: корреляционная матрица, метод плеяд.

Методы многомерного статистического анализа: факторный анализ , компонентный, регрессионный анализ, кластерный анализ. Перспективы моделирования исторических процессов для изучения социальных явлений.

Тема 9. ВЫБОРОЧНОЕ ИССЛЕДОВАНИЕ

Причины и условия проведения выборочного исследования. Необходимость использования историками методов частичного изучения социальный объектов.

Основные типы частичного обследования: монографический, метод основного массива, выборочное исследование.

Определение выборочного метода, основные свойства выборки. Репрезентативность выборки и ошибка выборки.

Этапы проведения выборочного исследования. Определение объема выборки, основные приемы и способы нахождения выборочного объема (математические методы, таблица больших чисел). Практика определения объема выборки в статистике и социологии.

Способы формирования выборочной совокупности: собственно-случайная выборка, механическая выборка, типическая и гнездовая выборка. Методика организации выборочных переписей населения, бюджетных обследований семей рабочих и крестьян.

Методика доказательства репрезентативности выборки. Случайные, систематические ошибки выборки и ошибки наблюдения. Роль традиционных методов в определении достоверности результатов выборки. Математические методы вычисления ошибки выборки. Зависимость ошибки от объема и вида выборки.

Особенности интерпретации результатов выборки и распространения показателей выборочной совокупности на генеральную совокупность.

Естественная выборка, основное содержание, особенности формирования. Проблема репрезентативности естественной выборки. Основные этапы доказательства репрезентативности естественной выборки: применение традиционных и формальных методов. Метод критерия знаков, метод серий - как способы доказательства свойства случайности выборки.

Понятие малой выборки. Основные принципы использования ее в научном исследовании

Тема 11. МЕТОДЫ ФОРМАЛИЗАЦИИ СВЕДЕНИЙ МАССОВЫХ ИСТОЧНИКОВ

Необходимость формализации сведений массовых источников для получения скрытой информации. Проблема измерения информации. Количественные и качественные признаки. Шкалы измерения количественных и качественных признаков: номинальная, порядковая, интервальная. Основные этапы измерения информации источника.

Виды массовых источников, особенности их измерения. Методика построение унифицированной анкеты по материалам структурированного, слабоструктурированного исторического источника.

Особенности измерения информации неструктурированного нарративного источника. Контент-анализ, его содержание и перспективы использования. Виды контент-анализа. Контент-анализ в социологических и исторических исследованиях.

Взаимосвязь математико-статистических методов обработки информации и методов формализации сведений источника. Компьютеризация исследований. Базы и банки данных. Технология баз данных в социально-экономических исследованиях.

Задания для самостоятельной работы

Для закрепления лекционного материала студентам предлагаются задания для самостоятельной работы по следующим темам курса:

Относительные показатели Средние показатели Группировочный метод Графические методы Показатели динамики

Выполнение заданий контролируется преподавателем и является обязательным условием допуска к зачету.

Примерный перечень вопросов к зачету

1. Математизация науки, сущность, предпосылки, уровни математизации

2. Основные этапы и особенности математизация исторической науки

3. Предпосылки использования математических методов в исторических исследованиях

4. Статистический показатель, сущность, функции, разновидности

3. Методологические принципы применения статистических показателей в исторических исследованиях

6. Абсолютные величины

7. Относительные величины, содержание, формы выражения, основные принципы вычисления.

8. Виды относительных величин

9. Задачи и основное содержание сводки данных

10. Группировка, основное содержание и задачи в исследовании

11. Основные этапы построения группировки

12. Понятие группировочного признака и его градаций

13. Виды группировки

14. Правила построения и оформления таблиц

15. Динамический ряд, требования, предъявляемые к построению динамического ряда

16. Статистический график, определение, структура, решаемые задачи

17. Виды статистических графиков

18. Полигон распределение признака. Нормальное распределение признака.

19. Линейная зависимость между признаками, методы определения линейности.

20. Понятие тренда динамического ряда, способы его определения

21. Средние величины в научном исследовании, их сущность и основные свойства. Условия типичности средних.

22. Виды средних показателей совокупности. Взаимосвязь средних показателей.

23. Статистические показатели динамики, общая характеристика, виды

24. Абсолютные показатели изменения рядов динамики

25. Относительные показатели изменения рядов динамики (темпы роста, темпы прироста)

26. Средние показатели динамического ряда

27. Показатели вариации, основное содержание и решаемые задачи, виды

28. Виды несплошного наблюдения

29. Выборочное исследование, основное содержание и решаемые задачи

30. Выборочная и генеральная совокупность, основные свойства выборки

31. Этапы проведения выборочного исследования, общая характеристика

32. Определение объема выборки

33. Способы формирования выборочной совокупности

34. Ошибка выборки и методы ее определения

35. Репрезентативность выборки, факторы влияющие на репрезентативность

36. Естественная выборка, проблема репрезентативности естественной выборки

37. Основные этапы доказательства репрезентативности естественной выборки

38. Корреляционный метод, сущность, основные задачи. Особенности интерпретации коэффициентов корреляции

39. Статистическое наблюдение как метод сбора информации, основные виды статистического наблюдения.

40. Виды корреляционных коэффициентов, общая характеристика

41. Коэффициент линейной корреляции

42. Коэффициент автокорреляции

43. Методы формализации исторических источников: метод унифицированной анкеты

44. Методы формализации исторических источников: метод контент-анализа

III. Распределение часов курса по темам и видам работ:

по учебному плану специальности (№ 000– документоведение и документационное обеспечение управления)

Наименование

разделов и тем

Аудиторные занятия

Самостоятельная работа

в том числе

Введение. Математизация науки

Статистические показатели

Группировка данных. Таблицы

Средние величины

Показатели вариации

Статистические показатели динамики

Методы многомерного анализа. Коэффициенты корреляции

Выборочное исследование

Методы формализации информации

Распределение часов курса по темам и видам работ

по учебному плану специальности № 000– историко – архивоведение

Наименование

разделов и тем

Аудиторные занятия

Самостоятельная работа

в том числе

Практические (семинары, лабораторные работы)

Введение. Математизация науки

Статистические показатели

Группировка данных. Таблицы

Графические методы анализа социально-экономической информации

Средние величины

Показатели вариации

Статистические показатели динамики

Методы многомерного анализа. Коэффициенты корреляции

Выборочное исследование

Методы формализации информации

IV. Форма итогового контроля - зачет

V. Учебно-методическое обеспечение курса

Славко методы в исторических исследованиях. Учебник. Екатеринбург, 1995

Мазур методы в исторических исследованиях. Методические рекомендации. Екатеринбург, 1998

Дополнительная литература

Бородкин статистический анализ в исторических исследованиях. М.,1986

Бородкин информатика: этапы развития // Новая и новейшая история. 1996. № 1.

Тихонов для гуманитариев. М., 1997

Гарскова и банки данных в исторических исследованиях. Геттинген, 1994

Герчук методы в статистике. М., 1968

Дружинин метод и его применение в социально-экономических исследованиях. М.,1970

Методы статистических обследований. М., 1985

Средние величины. М., 1970

Юзбашев теория статистики. М., 1995.

Румянцев теория статистики. М., 1998

Шмойлова изучение основной тенденции и взаимосвязи в рядах динамики. Томск, 1985

Выборочный метод в переписях и обследованиях /пер. с англ. . М., 1976

Историческая информатика. М.,1996.

Ковальченко исторического исследования. М.,1987

Компьютер в экономической истории. Барнаул, 1997

Круг идей: модели и технологии исторической информатики. М., 1996

Круг идей: традиции и тенденции исторической информатики. М., 1997

Круг идей: макро - и микро подходы в исторической информатике. М., 1998

Круг идей: историческая информатика на пороге XXI века. Чебоксары, 1999

Круг идей: историческая информатика в информационном обществе. М., 2001

Общая теория статистики: Учебник /ред. и. М., 1994.

Практикум по теории статистики: Учеб. пособ. М., 2000

Елисеева статистики. М., 1990

Славко -статистические методы в исторических и исследованиях М.,1981

Славко методы в изучении истории советского рабочего класса. М.,1991

Статистический словарь / под ред. . М., 1989

Теория статистики: Учебник / ред. , М., 2000

Урсул общества. Введение в социальную информатику. М., 1990

Выборочный метод / пер. с нем. . М., 1978

Математические методы в

Социально-гуманитарных науках

В литературе можно обнаружить множество моделей. Это объясняющие и дескриптивные (описательные) модели, теоретические и эмпирические, алгебраические и качественные, общие и частичные, модели a-priori и a-posteriori, динамические и статические, расширенные и ограниченные, имитационные и экспериментальные, детерминистические и стохастические, семантические и синтаксические, не говоря уже об иных типах моделей, с которыми можно столкнуться. Функция моделей может быть исследовательской и эвристической, редуцирующей и упрощающей, объясняющей или управляющей, а в общем - формализующей исследование. Часто модели применяются, чтобы навести мост через ущелье, разделяющее теорию и практику.

Термином "модель" в философской литературе обозначают "некоторую реально существующую или мысленно представляемую систему, которая, замещая и отображая в познавательных процессах другую систему-оригинал, находится с ней в отношении сходства (подобия), благодаря чему изучение модели позволяет получить новую информацию об оригинале" . В этом определении заложена генетическая связь моделирования с теорией подобия, принципом аналогии. Другой аспект моделирования отражен в определении методолога М.Вартофски: "Модель является наилучшим посредником между теоретическим языком науки и здравым смыслом исследователя".

Что касается математических моделей и возможностей их использования историками, то об этом и пойдет речь в данной главе.

Математические методы и модели в социальных науках: закономерности, специфика и этапы применения

Процесс внедрения математических методов в исследовательскую практику социально-гуманитарных наук (получивший название математизации социального знания) является многоаспектным, содержит в себе черты как интеграции, так и дифференциации современной науки.

Наиболее общей в методологическом плане является проблема объяснения принципиальной возможности использования математики в различных областях знания. Обсуждая эту проблему, известный математик, акад. Б.В. Гнеденко пишет о "мучительном вопросе, который ставили перед собой многие поколения математиков и философов: каким образом наука, казалось бы, не имеющая прямых связей с физикой, биологией, экономикой, применяется с успехом ко всем этим областям знания?" . Этот вопрос тем более уместен, что понятия математики и выводы из них, которые вводятся и строятся без явных видимых связей с проблемами, понятиями и задачами различных дисциплин, все чаще находят в них применение и способствуют более точному познанию.

Главными "заказчиками" для развития математики сегодня являются, наряду с естественнонаучными, и гуманитарно-социальные дисциплины, выдвигающие задачи, которые слабо формализуются в рамках традиционной математики .

Это существенно новый этап в развитии математики, если учесть, что на протяжении истории человечества действительный мир три раза давал мощные импульсы развитию математики .

Первый раз - в древние времена, когда потребности счета и землепользования вызвали к жизни арифметику и геометрию.

Второй сильный импульс математика получила в XVI-XVII вв., когда задачи механики и физики привели к формированию дифференциального и интегрального исчислений.

Третий мощный импульс со стороны реального мира математика получает в наши дни: это науки о человеке, "большие системы" разных видов (в том числе и социальные), проблемы информации. "Можно не сомневаться, – отмечает Г.Е. Шилов, – что "структурализация" новых областей математики, формирующихся под влиянием этого импульса, потребует у математиков многих лет и десятилетий напряженной работы" .

В этой связи представляет интерес и точка зрения выдающегося математика современности Дж. фон Неймана: "Решающая фаза применения математики к физике - создание Ньютоном науки механики - едва ли могла быть отделена от открытия дифференциального исчисления. ...Важность социальных явлений, богатство и множественность их проявлений по меньшей мере равны физическим. Следовательно, надо ожидать - или опасаться, что потребуются математические открытия того же ранга, что дифференциальное исчисление, для того, чтобы произвести решительный переворот в этой области" .

Воздействие современного этапа научно-технической революции с ее важной социальной компонентой существенно изменило традиционное представление о математике как о "вычислительной" науке.

Одним из главных направлений развития математики сегодня является исследование качественных сторон объектов и процессов.

Математика ХХ века - это качественная теория дифференциальных уравнений, топология, математическая логика, теория игр, теория нечетких множеств, теория графов и ряд других разделов, "которые сами с цифрами не оперируют, а изучают соотношения между понятиями и образами" .

Важной методологической проблемой математизации социального знания является определение степени универсальности математических методов и моделей, возможности переноса методов, применяемых в одной области науки, в другую.

В связи с этим следует, в частности, рассматривать вопрос о том, нужны ли специальные математические методы для исследования в социально-гуманитарных науках, или можно обойтись теми методами, которые возникли в процессе математизации естественных наук.

Основу для рассмотрения данного круга вопросов создает единство методологической структуры социального и естественнонаучного познания, обнаруживаемое в следующих главных пунктах:

описание и обобщение фактов;

установление логических и формальных связей, дедукция законов;

построение идеализированной модели, адаптированной к фактам;

объяснение и предсказание явлений .

Науки о природе и обществе осуществляют постоянный обмен методами: социально-гуманитарные науки все шире привлекают математические и экспериментальные методы, естественные науки - индивидуализирующие методы, системный подход и т.д.

Существенно, что использование математических моделей позволяет установить общность процессов, изучаемых различными отраслями знания. Однако, единство мира, общность основных принципов познания природы и общества отнюдь не уменьшают специфику социальных явлений. Так, едва ли смогут найти применение в социально-гуманитарных науках большинство математических моделей, созданных в процессе развития физики и других естественных наук. Это следует из того очевидного методологического положения, что именно специфика, внутренняя природа изучаемого явления или процесса должны определять подход к построению соответствующей математической модели. По этой причине аппарат многих разделов математики не используется в социально-гуманитарных науках. Наибольшее же распространение в этих дисциплинах получили методы математической статистики, основанные на результатах теории вероятностей . Объяснение этой ситуации потребует рассмотрения вопроса о закономерностях и этапах процесса внедрения математических методов в любой отрасли науки.

Опыт математизации научного знания свидетельствует о наличии трех этапов (их еще называют формами математизации) в этом процессе.

Первый этап состоит в "численном выражении изучаемой реальности для выявления количественной меры и границ соответствующих качеств" ; с этой целью проводится математико-статистическая обработка эмпирических данных, предлагается количественная формулировка качественно установленных фактов и обобщений.

Второй этап заключается в разработке математических моделей явлений и процессов в рассматриваемой области науки (это уровень частных теоретических схем); он отражает основную форму математизации научного познания.

Третий этап - использование математического аппарата для построения и анализа конкретных научных теорий (объединение частных построений в фундаментальную теоретическую схему, переход от модели к теории), т.е. формализация основных итогов самого научного знания .

В контексте нашего рассмотрения возникает необходимость хотя бы очень кратко затронуть вопрос - как определяется в современной науке понятие "математическая модель" ? Как правило, речь идет о системе математических соотношений, описывающих изучаемый процесс или явление; в общем смысле такая модель является множеством символических объектов и отношений между ними. Как отмечает Г.И. Рузавин, "до сих пор в конкретных приложениях математики чаще всего имеют дело с анализом величин и взаимосвязей между ними. Эти взаимосвязи описываются с помощью уравнений и систем уравнений" , в силу чего математическая модель обычно рассматривается как система уравнений, в которой конкретные величины заменяются математическими понятиями, постоянными и переменными величинами, функциями. Как правило, для этого применяются дифференциальные, интегральные и алгебраические уравнения. Получившаяся система уравнений вместе с известными данными, необходимыми для ее решения, называется математической моделью. Однако, развитие новейших разделов математики, связанных с анализом нечисловых структур, опыт их использования в социально-гуманитарных исследованиях показали, что рамки представлений о языке математических моделей должны быть раздвинуты, и тогда математическую модель можно определить как любую математическую структуру, "в которой ее объекты, а также отношения между объектами могут интерпретироваться различным образом (хотя с практической точки зрения математическая модель, выраженная с помощью уравнений, представляет собой наиболее важный тип модели)" .

В то время как в "точных" науках применяются все три формы математизации, (что дает основание говорить о "непостижимой эффективности" математики в естествознании ), науки "описательные" используют преимущественно лишь первую из указанных форм. Хотя, разумеется, и в совокупности социально - гуманитарных наук этот процесс имеет определенные различия. Лидируют здесь экономические исследования, в которых прочно освоены первые два этапа математизации (в частности, построен целый ряд эффективных матэкономических моделей, авторы которых удостоены Нобелевских премий), происходит движение к третьему этапу .

Оценивая сложившуюся ситуацию с "отставанием" в целом социального знания по степени проникновения в них точных методов, некоторые представители естественных наук объясняют это рядом причин субъективного характера. Более обоснованной представляется другая точка зрения, исходящая из того, что точные науки изучают сравнительно простые формы движения материи. "Уж не потому ли возникло это "отставание", - пишет известный математик-вероятностник, – что люди, занимавшиеся гуманитарными науками, были, что ли, "глупее" занимавшихся точными? Отнюдь нет! Просто явления, составляющие предмет гуманитарных наук, неизмеримо сложнее тех, которыми занимаются точные. Они гораздо труднее поддаются формализации. Для каждого из такого рода явлений гораздо шире спектр причин, от которых оно зависит... И все же в ряде случаев мы просто вынуждены строить и здесь математические модели. Если не точные, то приближенные. Если не для однозначного ответа на поставленный вопрос, то для ориентировки в явлении" . Как отмечает в этой же связи Г.И. Рузавин, в большинстве наук о человеке, которые традиционно считаются неточными, объект исследования настолько сложен, что он гораздо труднее поддается формализации и математизации. Поэтому стремление рассматривать точное естествознание как идеал научного знания игнорирует специфику исследования в других науках, качественное отличие объекта их изучения, несводимость высших форм движения к низким .

Здесь уже содержится подход к решению вопроса о том, соответствуют ли результаты, полученные с помощью математических методов в той или иной сфере социального знания, тем эталонам, критериям, которые приняты в "точных" науках? С одной стороны, общественные и естественные науки используют набор критериев научности, основанных на одних и тех же гносеологических принципах. Основные требования к научному методу могут быть сведены к следующему: предметность, фактичность, полнота описания, интерпретируемость, проверяемость, логическая строгость, достоверность и т.д. .

С другой стороны, исследовательская деятельность в рамках математического стандарта научности есть по преимуществу познание логически возможного; естественнонаучный стандарт ориентирован на получение результатов, эффективных для практической, предметной деятельности; социально-гуманитарный стандарт научного знания "ориентирован, помимо этого, на получение социально-значимых результатов, согласующихся с целями, основными ценностными установками социально-исторического субъекта" . Не претендуя здесь на анализ сложной проблемы соотношения стандартов научности, отметим лишь очевидную несводимость процесса исторического познания к чисто логическим или математическим процедурам. Сопоставление реальных процессов математизации различных областей социального знания выявляет существенные различия в характере этих процессов, происходящие прежде всего из специфики природы знания в тех или иных социальных науках. Представляется, что дискуссии о пределах проникновения математических методов в социально-гуманитарные науки не могут быть плодотворными без выявления типов социального знания.

А.М. Коршунов и В.В. Мантатов выделяют три типа социального знания: социально-философское , социально-экономическое и гуманитарное знание . Эти типы знания могут дополнять друг друга даже в рамках одной науки. Примером такого соединения является историческая наука , дающая описание социальных событий во всей их специфике и индивидуальности, духовной неповторимости, но вместе с тем опирающаяся на закономерности развития, прежде всего экономические. Как отмечают указанные авторы, социально-экономическое знание приближается по своему типу к знанию естественнонаучному . Именно поэтому в исследованиях социально-экономических процессов находят эффективное применение математические методы познания. Важным условием теоретизации социального знания, отмечают А.М. Коршунов и В.В. Мантатов, "является развитие специализированного языка, который открывает возможность конструирования и оперирования идеализированными моделями действительности. Построение такого языка преимущественно связано с применением категориального аппарата соответствующей научной дисциплины, а также формально-знаковых средств математики и логики" .

В.Ж. Келле и М.Я. Ковальзон, обсуждая ту же проблему, выделяют два типа социального знания . Один из них подобен естественнонаучному и может быть связан с применением математических методов, но во всех случаях предполагает такое описание социальных процессов, при котором внимание сосредоточивается на "объективном начале общества, объективных закономерностях и детерминантах". Этот тип знания за неимением более удачного термина авторы называют социологическим . Другой тип знания - социально-гуманитарный или просто гуманитарный . В его рамках вырабатываются методы научного анализа и индивидуализированного описания духовной стороны жизни человека. Эти типы социального знания отличаются друг от друга в первую очередь тем, что в соответствии со своими познавательными возможностями отображают различные аспекты реальности, дополняя друг друга. Поскольку грани между этими типами знания подвижны и относительны, они могут объединиться в рамках одной науки (пример такого рода дает история ). Методологическое значение предложенной типологизации состоит в том, что она дает подход к решению "извечного спора гуманитариев и их противников по вопросу о том, каким должно и может быть научное знание об обществе - или только прошедшим через "математический фильтр", строгим, формализованным, "точным", или сугубо гуманитарным, раскрывающим "человеческую", духовную сторону социально-культурной реальности, не претендующим на точность и принципиально отличным по своему характеру от знания естественного" . Признавая существование различных типов научного социального знания, тем самым мы снимаем указанную проблему дихотомичности научного знания и переводим разговор в другую плоскость - изучения специфики различных типов социального знания, их познавательного потенциала и - соответственно - возможностей их формализации и моделирования.

Второй аспект социального знания, влияющий на процесс его математизации, определяется зрелостью соответствующей научной области, наличием сложившегося концептуального аппарата, позволяющего на качественном уровне установить наиболее важные понятия, гипотезы и законы . "Именно опираясь на такой качественный анализ исследуемых объектов и процессов, можно ввести сравнительные и количественные понятия, выразить найденные обобщения и установленные закономерности на точном языке математики" , получив тем самым эффективный инструмент анализа в данной научной области.

В этой связи нам представляется справедливой точка зрения акад. Н.Н. Моисеева, который считает, что "принципиально нематематизируемых" дисциплин вообще не существует. Другое дело - степень математизации и этап эволюции научной дисциплины, на котором математизация начинает работать" .

Отмеченные факторы и особенности процесса математизации социального знания проявились и в опыте применения математических методов и моделей в исторических исследованиях, обладающих при этом определенной спецификой. Рассмотрим здесь ряд методических и методологических аспектов этого процесса, оказавшихся в последние годы в центре внимания историков , использующих в конкретно-исторических исследованиях методы математического моделирования.

КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «volonterraiona.ru» — Кирпичи. Блоки. Утеплители. Материалы. Изоляция